Limits and Continuity

Exercise Set 1.1

The limit is 1/3.

The limit is $+\infty$.

14. (a)	-0.25	-0.1	-0.001	-0.0001	0.0001	0.001	0.1	0.25
	0.5359	0.5132	0.5001	0.5000	0.5000	0.4999	0.4881	0.4721

The limit is 1/2.

(b)	0.25	0.1	0.001	0.0001	
	8.4721	20.488	2000.5	20001	

-1.5

The limit is 1.

0

17. False; define f(x) = x for $x \neq a$ and f(a) = a + 1. Then $\lim_{x \to a} f(x) = a \neq f(a) = a + 1$.

18. True; by 1.1.3.

19. False; define f(x) = 0 for x < 0 and f(x) = x + 1 for $x \ge 0$. Then the left and right limits exist but are unequal.

20. False; define f(x) = 1/x for x > 0 and f(0) = 2.

27.
$$m_{\text{sec}} = \frac{x^2 - 1}{x + 1} = x - 1$$
 which gets close to -2 as x gets close to -1 , thus $y - 1 = -2(x + 1)$ or $y = -2x - 1$.
28. $m_{\text{sec}} = \frac{x^2}{x} = x$ which gets close to 0 as x gets close to 0, thus $y = 0$.

- **29.** $m_{\text{sec}} = \frac{x^4 1}{x 1} = x^3 + x^2 + x + 1$ which gets close to 4 as x gets close to 1, thus y 1 = 4(x 1) or y = 4x 3.
- **30.** $m_{\text{sec}} = \frac{x^4 1}{x + 1} = x^3 x^2 + x 1$ which gets close to -4 as x gets close to -1, thus y 1 = -4(x + 1) or y = -4x 3.
- **31.** (a) The length of the rod while at rest.
 - (b) The limit is zero. The length of the rod approaches zero as its speed approaches c.
- **32.** (a) The mass of the object while at rest.
 - (b) The limiting mass as the velocity approaches the speed of light; the mass is unbounded.

The limit does not exist.

Exercise Set 1.2

- **1.** (a) By Theorem 1.2.2, this limit is $2 + 2 \cdot (-4) = -6$.
 - (b) By Theorem 1.2.2, this limit is $0 3 \cdot (-4) + 1 = 13$.
 - (c) By Theorem 1.2.2, this limit is $2 \cdot (-4) = -8$.
 - (d) By Theorem 1.2.2, this limit is $(-4)^2 = 16$.
 - (e) By Theorem 1.2.2, this limit is $\sqrt[3]{6+2} = 2$.
 - (f) By Theorem 1.2.2, this limit is $\frac{2}{(-4)} = -\frac{1}{2}$.
- **2.** (a) By Theorem 1.2.2, this limit is 0 + 0 = 0.
 - (b) The limit doesn't exist because $\lim f$ doesn't exist and $\lim g$ does.
 - (c) By Theorem 1.2.2, this limit is -2 + 2 = 0.
 - (d) By Theorem 1.2.2, this limit is 1 + 2 = 3.
 - (e) By Theorem 1.2.2, this limit is 0/(1+0) = 0.
 - (f) The limit doesn't exist because the denominator tends to zero but the numerator doesn't.
 - (g) The limit doesn't exist because $\sqrt{f(x)}$ is not defined for 0 < x < 2.
 - (h) By Theorem 1.2.2, this limit is $\sqrt{1} = 1$.
- **3.** By Theorem 1.2.3, this limit is $2 \cdot 1 \cdot 3 = 6$.
- **4.** By Theorem 1.2.3, this limit is $3^3 3 \cdot 3^2 + 9 \cdot 3 = 27$.
- 5. By Theorem 1.2.4, this limit is $(3^2 2 \cdot 3)/(3 + 1) = 3/4$.
- **6.** By Theorem 1.2.4, this limit is $(6 \cdot 0 9)/(0^3 12 \cdot 0 + 3) = -3$.
- 7. After simplification, $\frac{x^4 1}{x 1} = x^3 + x^2 + x + 1$, and the limit is $1^3 + 1^2 + 1 + 1 = 4$.
- 8. After simplification, $\frac{t^3+8}{t+2} = t^2 2t + 4$, and the limit is $(-2)^2 2 \cdot (-2) + 4 = 12$.

9. After simplification, $\frac{x^2 + 6x + 5}{x^2 - 3x - 4} = \frac{x + 5}{x - 4}$, and the limit is (-1 + 5)/(-1 - 4) = -4/5.

10. After simplification, $\frac{x^2 - 4x + 4}{x^2 + x - 6} = \frac{x - 2}{x + 3}$, and the limit is (2 - 2)/(2 + 3) = 0. **11.** After simplification, $\frac{2x^2 + x - 1}{x + 1} = 2x - 1$, and the limit is $2 \cdot (-1) - 1 = -3$. 12. After simplification, $\frac{3x^2 - x - 2}{2x^2 + x - 3} = \frac{3x + 2}{2x + 3}$, and the limit is $(3 \cdot 1 + 2)/(2 \cdot 1 + 3) = 1$. 13. After simplification, $\frac{t^3 + 3t^2 - 12t + 4}{t^3 - 4t} = \frac{t^2 + 5t - 2}{t^2 + 2t}$, and the limit is $(2^2 + 5 \cdot 2 - 2)/(2^2 + 2 \cdot 2) = 3/2$. 14. After simplification, $\frac{t^3 + t^2 - 5t + 3}{t^3 - 3t + 2} = \frac{t+3}{t+2}$, and the limit is (1+3)/(1+2) = 4/3. 15. The limit is $+\infty$. 16. The limit is $-\infty$. 17. The limit does not exist. 18. The limit is $+\infty$. 19. The limit is $-\infty$. 20. The limit does not exist. **21.** The limit is $+\infty$. **22.** The limit is $-\infty$. **23.** The limit does not exist. **24.** The limit is $-\infty$. **25.** The limit is $+\infty$. **26.** The limit does not exist. **27.** The limit is $+\infty$. **28.** The limit is $+\infty$. **29.** After simplification, $\frac{x-9}{\sqrt{x}-3} = \sqrt{x}+3$, and the limit is $\sqrt{9}+3=6$.

30. After simplification, $\frac{4-y}{2-\sqrt{y}} = 2 + \sqrt{y}$, and the limit is $2 + \sqrt{4} = 4$.

- **31.** (a) 2 (b) 2 (c) 2
- **32.** (a) does not exist (b) 1 (c) 4
- **33.** True, by Theorem 1.2.2.
- **34.** False; e.g. $\lim_{x \to 0} \frac{x^2}{x} = 0.$

35. False; e.g.
$$f(x) = 2x$$
, $g(x) = x$, so $\lim_{x \to 0} f(x) = \lim_{x \to 0} g(x) = 0$, but $\lim_{x \to 0} f(x)/g(x) = 2$

36. True, by Theorem 1.2.4.

37. After simplification, $\frac{\sqrt{x+4}-2}{x} = \frac{1}{\sqrt{x+4}+2}$, and the limit is 1/4.

38. After simplification, $\frac{\sqrt{x^2+4}-2}{x} = \frac{x}{\sqrt{x^2+4}+2}$, and the limit is 0.

39. (a) After simplification, $\frac{x^3-1}{x-1} = x^2 + x + 1$, and the limit is 3.

40. (a) After simplification, $\frac{x^2 - 9}{x + 3} = x - 3$, and the limit is -6, so we need that k = -6.

- (b) On its domain (all real numbers), f(x) = x 3.
- 41. (a) Theorem 1.2.2 doesn't apply; moreover one cannot subtract infinities.

(b)
$$\lim_{x \to 0^+} \left(\frac{1}{x} - \frac{1}{x^2}\right) = \lim_{x \to 0^+} \left(\frac{x-1}{x^2}\right) = -\infty.$$

42. (a) Theorem 1.2.2 assumes that L_1 and L_2 are real numbers, not infinities. It is in general not true that " $\infty \cdot 0 = 0$ ".

(b)
$$\frac{1}{x} - \frac{2}{x^2 + 2x} = \frac{x^2}{x(x^2 + 2x)} = \frac{1}{x+2}$$
 for $x \neq 0$, so that $\lim_{x \to 0} \left(\frac{1}{x} - \frac{2}{x^2 + 2x}\right) = \frac{1}{2}$.

43. For $x \neq 1$, $\frac{1}{x-1} - \frac{a}{x^2-1} = \frac{x+1-a}{x^2-1}$ and for this to have a limit it is necessary that $\lim_{x \to 1} (x+1-a) = 0$, i.e. a = 2. For this value, $\frac{1}{x-1} - \frac{2}{x^2-1} = \frac{x+1-2}{x^2-1} = \frac{x-1}{x^2-1} = \frac{1}{x+1}$ and $\lim_{x \to 1} \frac{1}{x+1} = \frac{1}{2}$.

- 44. (a) For small x, $1/x^2$ is much bigger than $\pm 1/x$.
 - (b) $\frac{1}{x} + \frac{1}{x^2} = \frac{x+1}{x^2}$. Since the numerator has limit 1 and x^2 tends to zero from the right, the limit is $+\infty$.
- **45.** The left and/or right limits could be plus or minus infinity; or the limit could exist, or equal any preassigned real number. For example, let $q(x) = x x_0$ and let $p(x) = a(x x_0)^n$ where n takes on the values 0, 1, 2.
- **46.** If on the contrary $\lim_{x \to a} g(x)$ did exist then by Theorem 1.2.2 so would $\lim_{x \to a} [f(x) + g(x)]$, and that would be a contradiction.
- **47.** Clearly, g(x) = [f(x) + g(x)] f(x). By Theorem 1.2.2, $\lim_{x \to a} [f(x) + g(x)] \lim_{x \to a} f(x) = \lim_{x \to a} [f(x) + g(x) f(x)] = \lim_{x \to a} g(x)$.

48. By Theorem 1.2.2, $\lim_{x \to a} f(x) = \left(\lim_{x \to a} \frac{f(x)}{g(x)}\right) \lim_{x \to a} g(x) = \left(\lim_{x \to a} \frac{f(x)}{g(x)}\right) \cdot 0 = 0$, since $\lim_{x \to a} \frac{f(x)}{g(x)}$ exists.

Exercise Set 1.3

- 1. (a) $-\infty$ (b) $+\infty$
- **2.** (a) 2 (b) 0
- **3. (a)** 0 **(b)** -1
- **4.** (a) does not exist (b) 0
- 5. (a) $3+3\cdot(-5) = -12$ (b) $0-4\cdot(-5)+1 = 21$ (c) $3\cdot(-5) = -15$ (d) $(-5)^2 = 25$ (e) $\sqrt[3]{5+3} = 2$ (f) 3/(-5) = -3/5 (g) 0
 - (h) The limit doesn't exist because the denominator tends to zero but the numerator doesn't.
- 6. (a) $2 \cdot 7 (-6) = 20$ **(b)** $6 \cdot 7 + 7 \cdot (-6) = 0$ (c) $+\infty$ (d) $-\infty$ (e) $\sqrt[3]{-42}$ (f) -6/7(g) 7 (h) -7/127. 10 1001000 10000 100000 1000000 x0.9534630.999500 0.999950f(x)0.995037 0.9999950.9999995

The limit appears to be 1.

8.	x	-10	-100	-1000	-10000	-100000	-1000000
	f(x)	-1.05409255	-1.00503781	-1.00050037	-1.00005000	-1.0000050	-1.00000050

The limit appears to be -1.

- 9. The limit is $-\infty$, by the highest degree term.
- 10. The limit is $+\infty$, by the highest degree term.
- 11. The limit is $+\infty$.
- 12. The limit is $+\infty$.
- 13. The limit is 3/2, by the highest degree terms.
- 14. The limit is 5/2, by the highest degree terms.
- 15. The limit is 0, by the highest degree terms.
- **16.** The limit is 0, by the highest degree terms.
- 17. The limit is 0, by the highest degree terms.
- 18. The limit is 5/3, by the highest degree terms.
- 19. The limit is $-\infty$, by the highest degree terms.
- **20.** The limit is $+\infty$, by the highest degree terms.
- **21.** The limit is -1/7, by the highest degree terms.
- **22.** The limit is 4/7, by the highest degree terms.
- **23.** The limit is $\sqrt[3]{-5/8} = -\sqrt[3]{5}/2$, by the highest degree terms.

24. The limit is $\sqrt[3]{3/2}$, by the highest degree terms.

25.
$$\frac{\sqrt{5x^2-2}}{x+3} = \frac{\sqrt{5-\frac{2}{x^2}}}{-1-\frac{3}{x}}$$
 when $x < 0$. The limit is $-\sqrt{5}$

26.
$$\frac{\sqrt{5x^2-2}}{x+3} = \frac{\sqrt{5-\frac{2}{x^2}}}{1+\frac{3}{x}}$$
 when $x > 0$. The limit is $\sqrt{5}$.

27.
$$\frac{2-y}{\sqrt{7+6y^2}} = \frac{-\frac{2}{y}+1}{\sqrt{\frac{7}{y^2}+6}}$$
 when $y < 0$. The limit is $1/\sqrt{6}$.

28.
$$\frac{2-y}{\sqrt{7+6y^2}} = \frac{\frac{2}{y}-1}{\sqrt{\frac{7}{y^2}+6}}$$
 when $y > 0$. The limit is $-1/\sqrt{6}$

29.
$$\frac{\sqrt{3x^4 + x}}{x^2 - 8} = \frac{\sqrt{3 + \frac{1}{x^3}}}{1 - \frac{8}{x^2}}$$
 when $x < 0$. The limit is $\sqrt{3}$.

30.
$$\frac{\sqrt{3x^4 + x}}{x^2 - 8} = \frac{\sqrt{3 + \frac{1}{x^3}}}{1 - \frac{8}{x^2}}$$
 when $x > 0$. The limit is $\sqrt{3}$.

31. $\lim_{x \to +\infty} (\sqrt{x^2 + 3} - x) \frac{\sqrt{x^2 + 3} + x}{\sqrt{x^2 + 3} + x} = \lim_{x \to +\infty} \frac{3}{\sqrt{x^2 + 3} + x} = 0$, by the highest degree terms.

32.
$$\lim_{x \to +\infty} (\sqrt{x^2 - 3x} - x) \frac{\sqrt{x^2 - 3x} + x}{\sqrt{x^2 - 3x} + x} = \lim_{x \to +\infty} \frac{-3x}{\sqrt{x^2 - 3x} + x} = -3/2$$
, by the highest degree terms.

- **33.** False; if x/2 > 1000 then $1000x < x^2/2, x^2 1000x > x^2/2$, so the limit is $+\infty$.
- **34.** False; y = 0 is a horizontal asymptote for the curve $y = e^x$ yet $\lim_{x \to +\infty} e^x$ does not exist.
- **35.** True: for example $f(x) = \sin x/x$ crosses the x-axis infinitely many times at $x = n\pi$, n = 1, 2, ...
- **36.** False: if the asymptote is y = 0, then $\lim_{x \to \pm \infty} p(x)/q(x) = 0$, and clearly the degree of p(x) is strictly less than the degree of q(x). If the asymptote is $y = L \neq 0$, then $\lim_{x \to \pm \infty} p(x)/q(x) = L$ and the degrees must be equal.
- **37.** It appears that $\lim_{t \to +\infty} n(t) = +\infty$, and $\lim_{t \to +\infty} e(t) = c$.
- **38.** (a) It is the initial temperature of the potato (400° F) .

(b) It is the ambient temperature, i.e. the temperature of the room.

- **39.** (a) $+\infty$ (b) -5
- **40.** (a) 0 (b) -6
- **41.** $\lim_{x \to -\infty} p(x) = +\infty$. When *n* is even, $\lim_{x \to +\infty} p(x) = +\infty$; when *n* is odd, $\lim_{x \to +\infty} p(x) = -\infty$.

42. (a) p(x) = q(x) = x. (b) p(x) = x, $q(x) = x^2$. (c) $p(x) = x^2$, q(x) = x. (d) p(x) = x + 3, q(x) = x.

43. (a) No. (b) Yes, $\tan x$ and $\sec x$ at $x = n\pi + \pi/2$ and $\cot x$ and $\csc x$ at $x = n\pi, n = 0, \pm 1, \pm 2, \dots$

44. If m > n the limit is zero. If m = n the limit is c_m/d_m . If n > m the limit is $+\infty$ if $c_n d_m > 0$ and $-\infty$ if $c_n d_m < 0$.

- **45.** (a) If $f(t) \to +\infty$ (resp. $f(t) \to -\infty$) then f(t) can be made arbitrarily large (resp. small) by taking t large enough. But by considering the values g(x) where g(x) > t, we see that f(g(x)) has the limit $+\infty$ too (resp. limit $-\infty$). If f(t) has the limit L as $t \to +\infty$ the values f(t) can be made arbitrarily close to L by taking t large enough. But if x is large enough then g(x) > t and hence f(g(x)) is also arbitrarily close to L.
 - (b) For $\lim_{x \to -\infty}$ the same argument holds with the substitution "x decreases without bound" instead of "x increases without bound". For lim substitute "x close enough to c, x < c", etc.
- **46.** (a) If $f(t) \to +\infty$ (resp. $f(t) \to -\infty$) then f(t) can be made arbitrarily large (resp. small) by taking t small enough. But by considering the values g(x) where g(x) < t, we see that f(g(x)) has the limit $+\infty$ too (resp. limit $-\infty$). If f(t) has the limit L as $t \to -\infty$ the values f(t) can be made arbitrarily close to L by taking t small enough. But if x is large enough then g(x) < t and hence f(g(x)) is also arbitrarily close to L.

(b) For $\lim_{x \to -\infty}$ the same argument holds with the substitution "x decreases without bound" instead of "x increases without bound". For lim substitute "x close enough to c, x < c", etc.

- **47.** t = 1/x, $\lim_{t \to +\infty} f(t) = +\infty$.
- **48.** t = 1/x, $\lim_{t \to -\infty} f(t) = 0$.
- **49.** $t = \csc x$, $\lim_{t \to +\infty} f(t) = +\infty$.
- **50.** $t = \csc x, \lim_{t \to -\infty} f(t) = 0.$
- **51.** After a long division, $f(x) = x + 2 + \frac{2}{x-2}$, so $\lim_{x \to \pm \infty} (f(x) (x+2)) = 0$ and f(x) is asymptotic to y = x + 2. The only vertical asymptote is at x = 2.

52. After a simplification, $f(x) = x^2 - 1 + \frac{3}{x}$, so $\lim_{x \to \pm \infty} (f(x) - (x^2 - 1)) = 0$ and f(x) is asymptotic to $y = x^2 - 1$. The only vertical asymptote is at x = 0.

53. After a long division, $f(x) = -x^2 + 1 + \frac{2}{x-3}$, so $\lim_{x \to \pm \infty} (f(x) - (-x^2 + 1)) = 0$ and f(x) is asymptotic to $y = -x^2 + 1$. The only vertical asymptote is at x = 3.

54. After a long division, $f(x) = x^3 + \frac{3}{2(x-1)} - \frac{3}{2(x+1)}$, so $\lim_{x \to \pm \infty} (f(x) - x^3) = 0$ and f(x) is asymptotic to $y = x^3$. The vertical asymptotes are at $x = \pm 1$.

55. $\lim_{x \to +\infty} (f(x) - \sin x) = 0$ so f(x) is asymptotic to $y = \sin x$. The only vertical asymptote is at x = 1.

Exercise Set 1.4

- 1. (a) |f(x) f(0)| = |x + 2 2| = |x| < 0.1 if and only if |x| < 0.1.
 - (b) |f(x) f(3)| = |(4x 5) 7| = 4|x 3| < 0.1 if and only if |x 3| < (0.1)/4 = 0.025.

(c) $|f(x) - f(4)| = |x^2 - 16| < \epsilon$ if $|x - 4| < \delta$. We get $f(x) = 16 + \epsilon = 16.001$ at x = 4.000124998, which corresponds to $\delta = 0.000124998$; and $f(x) = 16 - \epsilon = 15.999$ at x = 3.999874998, for which $\delta = 0.000125002$. Use the smaller δ : thus $|f(x) - 16| < \epsilon$ provided |x - 4| < 0.000125 (to six decimals).

- **2.** (a) |f(x) f(0)| = |2x + 3 3| = 2|x| < 0.1 if and only if |x| < 0.05.
 - (b) |f(x) f(0)| = |2x + 3 3| = 2|x| < 0.01 if and only if |x| < 0.005.
 - (c) |f(x) f(0)| = |2x + 3 3| = 2|x| < 0.0012 if and only if |x| < 0.0006.
- **3.** (a) $x_0 = (1.95)^2 = 3.8025, x_1 = (2.05)^2 = 4.2025.$
 - **(b)** $\delta = \min(|4 3.8025|, |4 4.2025|) = 0.1975.$

- 4. (a) $x_0 = 1/(1.1) = 0.909090..., x_1 = 1/(0.9) = 1.111111...$
 - **(b)** $\delta = \min(|1 0.909090|, |1 1.111111|) = 0.0909090...$
- 5. $|(x^3-4x+5)-2| < 0.05$ is equivalent to $-0.05 < (x^3-4x+5)-2 < 0.05$, which means $1.95 < x^3-4x+5 < 2.05$. Now $x^3-4x+5 = 1.95$ at x = 1.0616, and $x^3-4x+5 = 2.05$ at x = 0.9558. So $\delta = \min(1.0616 1, 1 0.9558) = 0.0442$.

6. $\sqrt{5x+1} = 3.5$ at x = 2.25, $\sqrt{5x+1} = 4.5$ at x = 3.85, so $\delta = \min(3 - 2.25, 3.85 - 3) = 0.75$.

- 7. With the TRACE feature of a calculator we discover that (to five decimal places) (0.87000, 1.80274) and (1.13000, 2.19301) belong to the graph. Set $x_0 = 0.87$ and $x_1 = 1.13$. Since the graph of f(x) rises from left to right, we see that if $x_0 < x < x_1$ then 1.80274 < f(x) < 2.19301, and therefore 1.8 < f(x) < 2.2. So we can take $\delta = 0.13$.
- 8. From a calculator plot we conjecture that $\lim_{x\to 0} f(x) = 2$. Using the TRACE feature we see that the points $(\pm 0.2, 1.94709)$ belong to the graph. Thus if -0.2 < x < 0.2, then $1.95 < f(x) \le 2$ and hence $|f(x) L| < 0.05 < 0.1 = \epsilon$.
- **9.** |2x 8| = 2|x 4| < 0.1 when $|x 4| < 0.1/2 = 0.05 = \delta$.
- **10.** |(5x-2)-13| = 5|x-3| < 0.01 when $|x-3| < 0.01/5 = 0.002 = \delta$.
- **11.** If $x \neq 3$, then $\left|\frac{x^2 9}{x 3} 6\right| = \left|\frac{x^2 9 6x + 18}{x 3}\right| = \left|\frac{x^2 6x + 9}{x 3}\right| = |x 3| < 0.05$ when $|x 3| < 0.05 = \delta$.
- **12.** If $x \neq -1/2$, then $\left|\frac{4x^2 1}{2x + 1} (-2)\right| = \left|\frac{4x^2 1 + 4x + 2}{2x + 1}\right| = \left|\frac{4x^2 + 4x + 1}{2x + 1}\right| = |2x + 1| = 2|x (-1/2)| < 0.05$ when $|x (-1/2)| < 0.025 = \delta$.
- 13. Assume $\delta \leq 1$. Then -1 < x 2 < 1 means 1 < x < 3 and then $|x^3 8| = |(x 2)(x^2 + 2x + 4)| < 19|x 2|$, so we can choose $\delta = 0.001/19$.
- **14.** Assume $\delta \le 1$. Then -1 < x 4 < 1 means 3 < x < 5 and then $|\sqrt{x} 2| = \left|\frac{x 4}{\sqrt{x} + 2}\right| < \frac{|x 4|}{\sqrt{3} + 2}$, so we can choose $\delta = 0.001 \cdot (\sqrt{3} + 2)$.

15. Assume $\delta \le 1$. Then -1 < x - 5 < 1 means 4 < x < 6 and then $\left|\frac{1}{x} - \frac{1}{5}\right| = \left|\frac{x - 5}{5x}\right| < \frac{|x - 5|}{20}$, so we can choose $\delta = 0.05 \cdot 20 = 1$.

- **16.** ||x| 0| = |x| < 0.05 when $|x 0| < 0.05 = \delta$.
- 17. Let $\epsilon > 0$ be given. Then $|f(x) 3| = |3 3| = 0 < \epsilon$ regardless of x, and hence any $\delta > 0$ will work.
- **18.** Let $\epsilon > 0$ be given. Then $|(x+2) 6| = |x-4| < \epsilon$ provided $\delta = \epsilon$ (although any smaller δ would work).
- **19.** $|3x 15| = 3|x 5| < \epsilon$ if $|x 5| < \epsilon/3$, $\delta = \epsilon/3$.
- **20.** $|7x + 5 + 2| = 7|x + 1| < \epsilon$ if $|x + 1| < \epsilon/7$, $\delta = \epsilon/7$.
- **21.** $\left|\frac{2x^2 + x}{x} 1\right| = |2x| < \epsilon \text{ if } |x| < \epsilon/2, \ \delta = \epsilon/2.$
- **22.** $\left|\frac{x^2-9}{x+3}-(-6)\right| = |x+3| < \epsilon \text{ if } |x+3| < \epsilon, \ \delta = \epsilon.$
- **23.** $|f(x) 3| = |x + 2 3| = |x 1| < \epsilon$ if $0 < |x 1| < \epsilon$, $\delta = \epsilon$.
- **24.** $|9 2x 5| = 2|x 2| < \epsilon$ if $0 < |x 2| < \epsilon/2$, $\delta = \epsilon/2$.
- **25.** If $\epsilon > 0$ is given, then take $\delta = \epsilon$; if $|x 0| = |x| < \delta$, then $|x 0| = |x| < \epsilon$.
- 26. If x < 2 then $|f(x)-5| = |9-2x-5| = 2|x-2| < \epsilon$ if $|x-2| < \epsilon/2$, $\delta_1 = \epsilon/2$. If x > 2 then $|f(x)-5| = |3x-1-5| = 3|x-2| < \epsilon$ if $|x-2| < \epsilon/3$, $\delta_2 = \epsilon/3$ Now let $\delta = \min(\delta_1, \delta_2)$ then for any x with $|x-2| < \delta$, $|f(x)-5| < \epsilon$.
- **27.** For the first part, let $\epsilon > 0$. Then there exists $\delta > 0$ such that if $a < x < a + \delta$ then $|f(x) L| < \epsilon$. For the left limit replace $a < x < a + \delta$ with $a \delta < x < a$.
- 28. (a) Given $\epsilon > 0$ there exists $\delta > 0$ such that if $0 < |x a| < \delta$ then $||f(x) L| 0| < \epsilon$, or $|f(x) L| < \epsilon$.

(b) From part (a) it follows that $|f(x) - L| < \epsilon$ is the defining condition for each of the two limits, so the two limit statements are equivalent.

- **29.** (a) $|(3x^2 + 2x 20 300| = |3x^2 + 2x 320| = |(3x + 32)(x 10)| = |3x + 32| \cdot |x 10|$.
 - (b) If |x 10| < 1 then |3x + 32| < 65, since clearly x < 11.
 - (c) $\delta = \min(1, \epsilon/65); \quad |3x+32| \cdot |x-10| < 65 \cdot |x-10| < 65 \cdot \epsilon/65 = \epsilon.$

30. (a)
$$\left|\frac{28}{3x+1} - 4\right| = \left|\frac{28 - 12x - 4}{3x+1}\right| = \left|\frac{-12x + 24}{3x+1}\right| = \left|\frac{12}{3x+1}\right| \cdot |x-2|.$$

(b) If $|x-2| < 4$ then $-2 < x < 6$, so x can be very close to $-1/3$, hence $\left|\frac{12}{3x+1}\right|$ is not bounded.

- (c) If |x-2| < 1 then 1 < x < 3 and 3x + 1 > 4, so $\left|\frac{12}{3x+1}\right| < \frac{12}{4} = 3$.
- (d) $\delta = \min(1, \epsilon/3); \quad \left|\frac{12}{3x+1}\right| \cdot |x-2| < 3 \cdot |x-2| < 3 \cdot \epsilon/3 = \epsilon.$
- **31.** If $\delta < 1$ then $|2x^2 2| = 2|x 1||x + 1| < 6|x 1| < \epsilon$ if $|x 1| < \epsilon/6$, so $\delta = \min(1, \epsilon/6)$.
- **32.** If $\delta < 1$ then $|x^2 + x 12| = |x + 4| \cdot |x 3| < 5|x 3| < \epsilon$ if $|x 3| < \epsilon/5$, so $\delta = \min(1, \epsilon/5)$.

33. If
$$\delta < 1/2$$
 and $|x - (-2)| < \delta$ then $-5/2 < x < -3/2$, $x + 1 < -1/2$, $|x + 1| > 1/2$; then $\left|\frac{1}{x+1} - (-1)\right| = \frac{|x+2|}{|x+1|} < 2|x+2| < \epsilon$ if $|x+2| < \epsilon/2$, so $\delta = \min(1/2, \epsilon/2)$.

- **34.** If $\delta < 1/4$ and $|x (1/2)| < \delta$ then $\left|\frac{2x+3}{x} 8\right| = \frac{|6x-3|}{|x|} < \frac{6|x (1/2)|}{1/4} = 24|x (1/2)| < \epsilon$ if $|x (1/2)| < \epsilon/24$, so $\delta = \min(1/4, \epsilon/24)$.
- **35.** $|\sqrt{x}-2| = \left|(\sqrt{x}-2)\frac{\sqrt{x}+2}{\sqrt{x}+2}\right| = \left|\frac{x-4}{\sqrt{x}+2}\right| < \frac{1}{2}|x-4| < \epsilon \text{ if } |x-4| < 2\epsilon, \text{ so } \delta = \min(2\epsilon,4).$
- **36.** If $\delta < 1$ and $|x 2| < \delta$ then |x| < 3 and $x^2 + 2x + 4 < 9 + 6 + 4 = 19$, so $|x^3 8| = |x 2| \cdot |x^2 + 2x + 4| < 19\delta < \epsilon$ if $\delta = \min(\epsilon/19, 1)$.
- **37.** Let $\epsilon > 0$ be given and take $\delta = \epsilon$. If $|x| < \delta$, then $|f(x) 0| = 0 < \epsilon$ if x is rational, and $|f(x) 0| = |x| < \delta = \epsilon$ if x is irrational.
- **38.** If the limit did exist, then for $\epsilon = 1/2$ there would exist $\delta > 0$ such that if $|x| < \delta$ then |f(x) L| < 1/2. Some of the x-values are rational, for which |L| < 1/2; some are irrational, for which |1 - L| < 1/2. But 1 = |1| = L + (1 - L) < 1/2 + 1/2, or 1 < 1, a contradiction. Hence the limit cannot exist.
- **39.** (a) We have to solve the equation $1/N^2 = 0.1$ here, so $N = \sqrt{10}$.
 - (b) This will happen when N/(N+1) = 0.99, so N = 99.

(c) Because the function $1/x^3$ approaches 0 from below when $x \to -\infty$, we have to solve the equation $1/N^3 = -0.001$, and N = -10.

(d) The function x/(x+1) approaches 1 from above when $x \to -\infty$, so we have to solve the equation N/(N+1) = 1.01. We obtain N = -101.

40. (a) $N = \sqrt[3]{10}$ (b) $N = \sqrt[3]{100}$ (c) $N = \sqrt[3]{1000} = 10$

41. (a)
$$\frac{x_1^2}{1+x_1^2} = 1 - \epsilon, x_1 = -\sqrt{\frac{1-\epsilon}{\epsilon}}; \quad \frac{x_2^2}{1+x_2^2} = 1 - \epsilon, x_2 = \sqrt{\frac{1-\epsilon}{\epsilon}}$$

(b) $N = \sqrt{\frac{1-\epsilon}{\epsilon}}$ (c) $N = -\sqrt{\frac{1-\epsilon}{\epsilon}}$
42. (a) $x_1 = -1/\epsilon^3; x_2 = 1/\epsilon^3$ (b) $N = 1/\epsilon^3$ (c) $N = -1/\epsilon^3$
43. $\frac{1}{x^2} < 0.01$ if $|x| > 10, N = 10$.

44.
$$\frac{1}{x+2} < 0.005$$
 if $|x+2| > 200$, $x > 198$, $N = 198$.

45.
$$\left| \frac{x}{x+1} - 1 \right| = \left| \frac{1}{x+1} \right| < 0.001 \text{ if } |x+1| > 1000, x > 999, N = 999.$$

46.
$$\left|\frac{4x-1}{2x+5}-2\right| = \left|\frac{11}{2x+5}\right| < 0.1 \text{ if } |2x+5| > 110, \ 2x > 105, \ N = 52.5.$$

47.
$$\left|\frac{1}{x+2} - 0\right| < 0.005 \text{ if } |x+2| > 200, \ -x - 2 > 200, \ x < -202, \ N = -202.$$

$$\begin{aligned} \mathbf{48} \quad \left| \frac{1}{x^2} \right| < 0.01 \text{ if } |x| > 10, -x > 10, x < -10, N = -10. \\ \mathbf{49} \quad \left| \frac{4x-1}{2x+5} - 2 \right| = \left| \frac{11}{2x+5} \right| < 0.1 \text{ if } |2x+5| > 110, -2x-5 > 110, 2x < -115, x < -57.5, N = -57.5. \\ \mathbf{50} \quad \left| \frac{x}{x+1} - 1 \right| = \left| \frac{1}{x+1} \right| < 0.001 \text{ if } |x+1| > 1000, -x-1 > 1000, x < -1001, N = -1001. \\ \mathbf{51} \quad \left| \frac{1}{x^2} \right| < \epsilon \text{ if } |x| > \frac{1}{\sqrt{\epsilon}}, \text{ so } N = \frac{1}{\sqrt{\epsilon}}. \\ \mathbf{52} \quad \left| \frac{1}{x+2} \right| < \epsilon \text{ if } |x+2| > \frac{1}{\epsilon}, \text{ i.e. when } x+2 > \frac{1}{\epsilon}, \text{ or } x > \frac{1}{\epsilon} - 2, \text{ so } N = \frac{1}{\epsilon} - 2. \\ \mathbf{53} \quad \left| \frac{4x-1}{2x+5} - 2 \right| = \left| \frac{11}{2x+5} \right| < \epsilon \text{ if } |2x+5| > \frac{11}{\epsilon}, \text{ i.e. when } -2x-5 > \frac{11}{\epsilon}, \text{ which means } 2x < -\frac{11}{\epsilon} - 5, \text{ or } x < -\frac{11}{2\epsilon} - \frac{5}{2}. \\ \mathbf{53} \quad \left| \frac{4x-1}{2x+5} - 2 \right| = \left| \frac{1}{2x+1} \right| < \epsilon \text{ if } |x+1| > \frac{1}{\epsilon}, \text{ i.e. when } -x-1 > \frac{1}{\epsilon}, \text{ or } x < -1 - \frac{1}{\epsilon}, \text{ so } N = -1 - \frac{1}{\epsilon}. \\ \mathbf{54} \quad \left| \frac{x}{x+1} - 1 \right| = \left| \frac{1}{x+1} \right| < \epsilon \text{ if } |x+1| > \frac{1}{\epsilon}, \text{ i.e. when } -x-1 > \frac{1}{\epsilon}, \text{ or } x > \left(1 + \frac{2}{\epsilon} \right)^2, \text{ so } N = \left(1 + \frac{2}{\epsilon} \right)^2. \\ \mathbf{55} \quad \left| \frac{2\sqrt{x}}{\sqrt{x+1}} - 2 \right| = \left| \frac{2}{\sqrt{x-1}} \right| < \epsilon \text{ if } \sqrt{x} + 2 < -\frac{2}{\epsilon}, \text{ i.e. when } \sqrt{x} > 1 + \frac{2}{\epsilon}, \text{ or } x < \left(1 - 2 - \frac{2}{\epsilon} \right)^3, \text{ so } N = \left(-2 - \frac{2}{\epsilon} \right)^3. \\ \mathbf{57} \quad \mathbf{(a)} \quad \frac{1}{x^2} > 100 \text{ if } |x| < \frac{1}{10} \qquad \mathbf{(b)} \quad \frac{1}{|x-1|} > 1000 \text{ if } |x-1| < \frac{1}{1000} \\ (e) \quad \frac{1}{(x-1)^2} > 1000 \text{ of } |x-3| < \frac{1}{10\sqrt{10}} \\ (b) \quad \frac{1}{(x-1)^2} > 1000 \text{ of } |x-3| < \frac{1}{10\sqrt{10}} \\ \mathbf{(b)} \quad \frac{1}{(x-1)^2} > 10000 \text{ if and only if } |x-1| < \frac{1}{10\sqrt{10}} \\ \mathbf{(b)} \quad \frac{1}{(x-1)^2} > 100000 \text{ if and only if } |x-1| < \frac{1}{10\sqrt{10}} \\ \mathbf{(b)} \quad \frac{1}{(x-1)^2} > 100000 \text{ if and only if } |x-1| < \frac{1}{10\sqrt{10}} \\ \mathbf{(b)} \quad \frac{1}{(x-1)^2} > 100000 \text{ if and only if } |x-1| < \frac{1}{10\sqrt{10}} \\ \mathbf{60}. \text{ If } M > 0 \text{ then } \frac{1}{(x-3)^2} < M \text{ when } 0 < (x-3)^2 < -\frac{1}{M}, \text{ or } 0 < |x-3| < \frac{1}{\sqrt{M}}, \text{ so } \delta = \frac{1}{\sqrt{M}}. \\ \mathbf{61}. \text{ If } M > 0 \text{ then } \frac{1}{|x|} > M \text{ when } 0 < |x| < \frac{1}{M}, \text{ so } \delta = \frac{1}{M}. \\ \mathbf{62}. \text{$$

63. If M < 0 then $-\frac{1}{x^4} < M$ when $0 < x^4 < -\frac{1}{M}$, or $|x| < \frac{1}{(-M)^{1/4}}$, so $\delta = \frac{1}{(-M)^{1/4}}$. 64. If M > 0 then $\frac{1}{x^4} > M$ when $0 < x^4 < \frac{1}{M}$, or $x < \frac{1}{M^{1/4}}$, so $\delta = \frac{1}{M^{1/4}}$. 65. If x > 2 then $|x + 1 - 3| = |x - 2| = x - 2 < \epsilon$ if $2 < x < 2 + \epsilon$, so $\delta = \epsilon$. 66. If x < 1 then $|3x + 2 - 5| = |3x - 3| = 3|x - 1| = 3(1 - x) < \epsilon$ if $1 - x < \epsilon/3$, or $1 - \epsilon/3 < x < 1$, so $\delta = \epsilon/3$. 67. If x > 4 then $\sqrt{x - 4} < \epsilon$ if $x - 4 < \epsilon^2$, or $4 < x < 4 + \epsilon^2$, so $\delta = \epsilon^2$. 68. If x < 0 then $\sqrt{-x} < \epsilon$ if $-x < \epsilon^2$, or $-\epsilon^2 < x < 0$, so $\delta = \epsilon^2$. 69. If x > 2 then $|f(x) - 2| = |x - 2| = x - 2 < \epsilon$ if $2 < x < 2 + \epsilon$, so $\delta = \epsilon$. 70. If x < 2 then $|f(x) - 6| = |3x - 6| = 3|x - 2| = 3(2 - x) < \epsilon$ if $2 - x < \epsilon/3$, or $2 - \epsilon/3 < x < 2$, so $\delta = \epsilon/3$.

71. (a) Definition: For every M < 0 there corresponds a $\delta > 0$ such that if $1 < x < 1 + \delta$ then f(x) < M. In our case we want $\frac{1}{1-x} < M$, i.e. $1-x > \frac{1}{M}$, or $x < 1 - \frac{1}{M}$, so we can choose $\delta = -\frac{1}{M}$.

(b) Definition: For every M > 0 there corresponds a $\delta > 0$ such that if $1 - \delta < x < 1$ then f(x) > M. In our case we want $\frac{1}{1-x} > M$, i.e. $1 - x < \frac{1}{M}$, or $x > 1 - \frac{1}{M}$, so we can choose $\delta = \frac{1}{M}$.

72. (a) Definition: For every M > 0 there corresponds a $\delta > 0$ such that if $0 < x < \delta$ then f(x) > M. In our case we want $\frac{1}{x} > M$, i.e. $x < \frac{1}{M}$, so take $\delta = \frac{1}{M}$.

(b) Definition: For every M < 0 there corresponds a $\delta > 0$ such that if $-\delta < x < 0$ then f(x) < M. In our case we want $\frac{1}{x} < M$, i.e $x > \frac{1}{M}$, so take $\delta = -\frac{1}{M}$.

- **73.** (a) Given any M > 0, there corresponds an N > 0 such that if x > N then f(x) > M, i.e. x + 1 > M, or x > M 1, so N = M 1.
 - (b) Given any M < 0, there corresponds an N < 0 such that if x < N then f(x) < M, i.e. x + 1 < M, or x < M 1, so N = M 1.
- 74. (a) Given any M > 0, there corresponds an N > 0 such that if x > N then f(x) > M, i.e. $x^2 3 > M$, or $x > \sqrt{M+3}$, so $N = \sqrt{M+3}$.

(b) Given any M < 0, there corresponds an N < 0 such that if x < N then f(x) < M, i.e. $x^3 + 5 < M$, or $x < (M-5)^{1/3}$, so $N = (M-5)^{1/3}$.

- **75.** (a) $\frac{3.0}{7.5} = 0.4$ (amperes) (b) [0.3947, 0.4054] (c) $\left[\frac{3}{7.5+\delta}, \frac{3}{7.5-\delta}\right]$ (d) 0.0187
 - (e) It approaches infinity.

Exercise Set 1.5

- 1. (a) No: $\lim_{x\to 2} f(x)$ does not exist. (b) No: $\lim_{x\to 2} f(x)$ does not exist. (c) No: $\lim_{x\to 2^-} f(x) \neq f(2)$.
 - (d) Yes. (e) Yes. (f) Yes.

8. The discontinuities probably correspond to the times when the patient takes the medication. We see a jump in the concentration values here, which are followed by continuously decreasing concentration values as the medication is being absorbed.

- (b) One second could cost you one dollar.
- 10. (a) Not continuous, since the values are integers.
 - (b) Continuous.
 - (c) Not continuous, again, the values are integers (if we measure them in cents).
 - (d) Continuous.

- 11. None, this is a continuous function on the real numbers.
- 12. None, this is a continuous function on the real numbers.
- 13. None, this is a continuous function on the real numbers.
- 14. The function is not continuous at x = 2 and x = -2.
- **15.** The function is not continuous at x = -1/2 and x = 0.
- 16. None, this is a continuous function on the real numbers.
- 17. The function is not continuous at x = 0, x = 1 and x = -1.
- **18.** The function is not continuous at x = 0 and x = -4.
- **19.** None, this is a continuous function on the real numbers.
- **20.** The function is not continuous at x = 0 and x = -1.
- **21.** None, this is a continuous function on the real numbers. f(x) = 2x + 3 is continuous on x < 4 and $f(x) = 7 + \frac{16}{x}$ is continuous on 4 < x; $\lim_{x \to 4^-} f(x) = \lim_{x \to 4^+} f(x) = f(4) = 11$ so f is continuous at x = 4.
- **22.** The function is not continuous at x = 1, as $\lim_{x \to 1} f(x)$ does not exist.
- **23.** True; by Theorem 1.5.5.
- **24.** False; e.g. f(x) = 1 if $x \neq 3$, f(3) = -1.
- **25.** False; e.g. f(x) = g(x) = 2 if $x \neq 3$, f(3) = 1, g(3) = 3.
- **26.** False; e.g. f(x) = g(x) = 2 if $x \neq 3$, f(3) = 1, g(3) = 4.
- **27.** True; use Theorem 1.5.3 with $g(x) = \sqrt{f(x)}$.
- 28. Generally, this statement is false because $\sqrt{f(x)}$ might not even be defined. If we suppose that f(c) is nonnegative, and f(x) is also nonnegative on some interval $(c \alpha, c + \alpha)$, then the statement is true. If f(c) = 0 then given $\epsilon > 0$ there exists $\delta > 0$ such that whenever $|x c| < \delta, 0 \le f(x) < \epsilon^2$. Then $|\sqrt{f(x)}| < \epsilon$ and \sqrt{f} is continuous at x = c. If $f(c) \ne 0$ then given $\epsilon > 0$ there corresponds $\delta > 0$ such that whenever $|x c| < \delta, |f(x) f(c)| < \epsilon \sqrt{f(c)}$. Then $|\sqrt{f(x)} \sqrt{f(c)}| = \frac{|f(x) f(c)|}{|\sqrt{f(x)} + \sqrt{f(c)}|} \le \frac{|f(x) f(c)|}{\sqrt{f(c)}} < \epsilon$.
- **29.** (a) f is continuous for x < 1, and for x > 1; $\lim_{x \to 1^-} f(x) = 5$, $\lim_{x \to 1^+} f(x) = k$, so if k = 5 then f is continuous for all x.

(b) f is continuous for x < 2, and for x > 2; $\lim_{x \to 2^-} f(x) = 4k$, $\lim_{x \to 2^+} f(x) = 4 + k$, so if 4k = 4 + k, k = 4/3 then f is continuous for all x.

30. (a) f is continuous for x < 3, and for x > 3; $\lim_{x \to 3^-} f(x) = k/9$, $\lim_{x \to 3^+} f(x) = 0$, so if k = 0 then f is continuous for all x.

(b) f is continuous for x < 0, and for x > 0; $\lim_{x \to 0^-} f(x)$ doesn't exist unless k = 0, and if so then $\lim_{x \to 0^-} f(x) = 0$; $\lim_{x \to 0^+} f(x) = 9$, so there is no k value which makes the function continuous everywhere.

31. *f* is continuous for x < -1, -1 < x < 2 and x > 2; $\lim_{x \to -1^{-}} f(x) = 4$, $\lim_{x \to -1^{+}} f(x) = k$, so k = 4 is required. Next, $\lim_{x \to 2^{-}} f(x) = 3m + k = 3m + 4$, $\lim_{x \to 2^{+}} f(x) = 9$, so 3m + 4 = 9, m = 5/3 and *f* is continuous everywhere if k = 4 and m = 5/3.

32. (a) No, f is not defined at x = 2. (b) No, f is not defined for $x \le 2$. (c) Yes. (d) No, see (b).

(c) Define f(1) = 2 and redefine g(1) = 1.

35. (a) x = 0, $\lim_{x \to 0^-} f(x) = -1 \neq +1 = \lim_{x \to 0^+} f(x)$ so the discontinuity is not removable.

- (b) x = -3; define $f(-3) = -3 = \lim_{x \to -3} f(x)$, then the discontinuity is removable.
- (c) f is undefined at $x = \pm 2$; at x = 2, $\lim_{x \to 2} f(x) = 1$, so define f(2) = 1 and f becomes continuous there; at x = -2, $\lim_{x \to -2} f(x)$ does not exist, so the discontinuity is not removable.
- **36.** (a) f is not defined at x = 2; $\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{x+2}{x^2+2x+4} = \frac{1}{3}$, so define $f(2) = \frac{1}{3}$ and f becomes continuous there.
 - (b) $\lim_{x \to 2^{-}} f(x) = 1 \neq 4 = \lim_{x \to 2^{+}} f(x)$, so f has a nonremovable discontinuity at x = 2.
 - (c) $\lim_{x \to 1} f(x) = 8 \neq f(1)$, so f has a removable discontinuity at x = 1.

Discontinuity at x = 1/2, not removable; at x = -3, removable.

(b)
$$2x^2 + 5x - 3 = (2x - 1)(x + 3)$$

There appears to be one discontinuity near x = -1.52.

(b) One discontinuity at $x \approx -1.52$.

- **39.** Write $f(x) = x^{3/5} = (x^3)^{1/5}$ as the composition (Theorem 1.5.6) of the two continuous functions $g(x) = x^3$ and $h(x) = x^{1/5}$; it is thus continuous.
- **40.** $x^4 + 7x^2 + 1 \ge 1 > 0$, thus f(x) is the composition of the polynomial $x^4 + 7x^2 + 1$, the square root \sqrt{x} , and the function 1/x and is therefore continuous by Theorem 1.5.6.
- **41.** Since f and g are continuous at x = c we know that $\lim_{x \to c} f(x) = f(c)$ and $\lim_{x \to c} g(x) = g(c)$. In the following we use Theorem 1.2.2.
 - (a) $f(c) + g(c) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x) = \lim_{x \to c} (f(x) + g(x))$ so f + g is continuous at x = c.
 - (b) Same as (a) except the + sign becomes a sign.

(c)
$$f(c)g(c) = \lim_{x \to c} f(x)\lim_{x \to c} g(x) = \lim_{x \to c} f(x)g(x)$$
 so fg is continuous at $x = c$.

- **42.** A rational function is the quotient f(x)/g(x) of two polynomials f(x) and g(x). By Theorem 1.5.2 f and g are continuous everywhere; by Theorem 1.5.3 f/g is continuous except when g(x) = 0.
- **43.** (a) Let h = x c, x = h + c. Then by Theorem 1.5.5, $\lim_{h \to 0} f(h + c) = f(\lim_{h \to 0} (h + c)) = f(c)$.

(b) With g(h) = f(c+h), $\lim_{h \to 0} g(h) = \lim_{h \to 0} f(c+h) = f(c) = g(0)$, so g(h) is continuous at h = 0. That is, f(c+h) is continuous at h = 0, so f is continuous at x = c.

- 44. The function h(x) = f(x) g(x) is continuous on the interval [a, b], and satisfies h(a) > 0, h(b) < 0. The Intermediate Value Theorem or Theorem 1.5.9 tells us that there is at least one solution of the equation on this interval h(x) = 0, i.e. f(x) = g(x).
- **45.** Of course such a function must be discontinuous. Let f(x) = 1 on $0 \le x < 1$, and f(x) = -1 on $1 \le x \le 2$.
- **46.** (a) (i) No. (ii) Yes. (b) (i) No. (ii) No. (c) (i) No. (ii) No.
- 47. If $f(x) = x^3 + x^2 2x 1$, then f(-1) = 1, f(1) = -1. The Intermediate Value Theorem gives us the result.
- **48.** Since $\lim_{x \to -\infty} p(x) = -\infty$ and $\lim_{x \to +\infty} p(x) = +\infty$ (or vice versa, if the leading coefficient of p is negative), it follows that for M = -1 there corresponds $N_1 < 0$, and for M = 1 there is $N_2 > 0$, such that p(x) < -1 for $x < N_1$ and p(x) > 1 for $x > N_2$. We choose $x_1 < N_1$ and $x_2 > N_2$ and use Theorem 1.5.9 on the interval $[x_1, x_2]$ to show the existence of a solution of p(x) = 0.
- **49.** For the negative root, use intervals on the x-axis as follows: [-2, -1]; since f(-1.3) < 0 and f(-1.2) > 0, the midpoint x = -1.25 of [-1.3, -1.2] is the required approximation of the root. For the positive root use the interval [0, 1]; since f(0.7) < 0 and f(0.8) > 0, the midpoint x = 0.75 of [0.7, 0.8] is the required approximation.

- 50. For the negative root, use intervals on the x-axis as follows: [-2, -1]; since f(-1.7) < 0 and f(-1.6) > 0, use the interval [-1.7, -1.6]. Since f(-1.61) < 0 and f(-1.60) > 0 the midpoint x = -1.605 of [-1.61, -1.60] is the required approximation of the root. For the positive root use the interval [1, 2]; since f(1.3) > 0 and f(1.4) < 0, use the interval [1.3, 1.4]. Since f(1.37) > 0 and f(1.38) < 0, the midpoint x = 1.375 of [1.37, 1.38] is the required approximation.
- 51. For the positive root, use intervals on the x-axis as follows: [2,3]; since f(2.2) < 0 and f(2.3) > 0, use the interval [2.2, 2.3]. Since f(2.23) < 0 and f(2.24) > 0 the midpoint x = 2.235 of [2.23, 2.24] is the required approximation of the root.
- 52. Assume the locations along the track are numbered with increasing $x \ge 0$. Let $T_S(x)$ denote the time during the sprint when the runner is located at point $x, 0 \le x \le 100$. Let $T_J(x)$ denote the time when the runner is at the point x on the return jog, measured so that $T_J(100) = 0$. Then $T_S(0) = 0, T_S(100) > 0, T_J(100) = 0, T_J(0) > 0$, so that Exercise 44 applies and there exists an x_0 such that $T_S(x_0) = T_J(x_0)$.
- **53.** Consider the function $f(\theta) = T(\theta + \pi) T(\theta)$. Note that T has period 2π , $T(\theta + 2\pi) = T(\theta)$, so that $f(\theta + \pi) = T(\theta + 2\pi) T(\theta + \pi) = -(T(\theta + \pi) T(\theta)) = -f(\theta)$. Now if $f(\theta) \equiv 0$, then the statement follows. Otherwise, there exists θ such that $f(\theta) \neq 0$ and then $f(\theta + \pi)$ has an opposite sign, and thus there is a t_0 between θ and $\theta + \pi$ such that $f(t_0) = 0$ and the statement follows.
- 54. Let the ellipse be contained between the horizontal lines y = a and y = b, where a < b. The expression $|f(z_1) f(z_2)|$ expresses the area of the ellipse that lies between the vertical lines $x = z_1$ and $x = z_2$, and thus $|f(z_1) f(z_2)| \le (b-a)|z_1 z_2|$. Thus for a given $\epsilon > 0$ there corresponds $\delta = \epsilon/(b-a)$, such that if $|z_1 z_2| < \delta$, then $|f(z_1) f(z_2)| \le (b-a)|z_1 z_2| < (b-a)\delta = \epsilon$ which proves that f is a continuous function.
- 55. Since R and L are arbitrary, we can introduce coordinates so that L is the x-axis. Let f(z) be as in Exercise 54. Then for large z, f(z) = area of ellipse, and for small z, f(z) = 0. By the Intermediate Value Theorem there is a z_1 such that $f(z_1)$ = half of the area of the ellipse.

(b) Let g(x) = x - f(x). Then g(x) is continuous, $g(1) \ge 0$ and $g(0) \le 0$; by the Intermediate Value Theorem there is a solution c in [0, 1] of g(c) = 0, which means f(c) = c.

57. For $x \ge 0, f$ is increasing and so is one-to-one. It is continuous everywhere and thus by Theorem 1.5.7 it has an inverse defined on its range $[5, +\infty)$ which is continuous there.

58.
$$L = h(0) = h(\lim_{x \to 0} f^{-1}(x)) = \lim_{x \to 0} h(f^{-1}(x)) = \lim_{x \to 0} \frac{f(f^{-1}(x))}{f^{-1}(x)} = \lim_{x \to 0} \frac{x}{f^{-1}(x)}$$

Exercise Set 1.6

- 1. This is a composition of continuous functions, so it is continuous everywhere.
- **2.** Discontinuity at $x = \pi$.
- **3.** Discontinuities at $x = n\pi, n = 0, \pm 1, \pm 2, \ldots$
- 4. Discontinuities at $x = \frac{\pi}{2} + n\pi$, $n = 0, \pm 1, \pm 2, \dots$

- 5. Discontinuities at $x = n\pi$, $n = 0, \pm 1, \pm 2, \ldots$
- 6. Continuous everywhere.

7. Discontinuities at $x = \frac{\pi}{6} + 2n\pi$, and $x = \frac{5\pi}{6} + 2n\pi$, $n = 0, \pm 1, \pm 2, ...$ 8. Discontinuities at $x = \frac{\pi}{2} + n\pi$, $n = 0, \pm 1, \pm 2, \dots$ 9. (a) $f(x) = \sin x, g(x) = x^3 + 7x + 1.$ (b) $f(x) = |x|, g(x) = \sin x.$ (c) $f(x) = x^3, g(x) = \cos(x+1).$ **(b)** $f(x) = \sin x, \ g(x) = \sin x.$ **(c)** $f(x) = x^5 - 2x^3 + 1,$ **10. (a)** $f(x) = |x|, g(x) = 3 + \sin 2x.$ $q(x) = \cos x.$ 11. $\lim_{x \to +\infty} \cos\left(\frac{1}{x}\right) = \cos\left(\lim_{x \to +\infty} \frac{1}{x}\right) = \cos 0 = 1.$ 12. $\lim_{x \to +\infty} \sin\left(\frac{\pi x}{2-3x}\right) = \sin\left(\lim_{x \to +\infty} \frac{\pi x}{2-3x}\right) = \sin\left(-\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2}.$ 13. $\lim_{\theta \to 0} \frac{\sin 3\theta}{\theta} = 3 \lim_{\theta \to 0} \frac{\sin 3\theta}{3\theta} = 3$ 14. $\lim_{h \to 0} \frac{\sin h}{2h} = \frac{1}{2} \lim_{h \to 0} \frac{\sin h}{h} = \frac{1}{2}$. **15.** $\lim_{x \to 0} \frac{x^2 - 3\sin x}{x} = \lim_{x \to 0} x - 3\lim_{x \to 0} \frac{\sin x}{x} = -3.$ 16. $\frac{2-\cos 3x - \cos 4x}{x} = \frac{1-\cos 3x}{x} + \frac{1-\cos 4x}{x}$. Note that $\frac{1-\cos 3x}{x} = \frac{1-\cos 3x}{x} \cdot \frac{1+\cos 3x}{1+\cos 3x} = \frac{\sin^2 3x}{x(1+\cos 3x)} = \frac{1-\cos 3x}{x}$ $\frac{\sin 3x}{x} \cdot \frac{\sin 3x}{1 + \cos 3x}$. Thus $\lim_{x \to 0} \frac{2 - \cos 3x - \cos 4x}{x} = \lim_{x \to 0} \frac{\sin 3x}{x} \cdot \frac{\sin 3x}{1 + \cos 3x} + \lim_{x \to 0} \frac{\sin 4x}{x} \cdot \frac{\sin 4x}{1 + \cos 4x} = 3 \cdot 0 + 4 \cdot 0 = 0.$ 17. $\lim_{\theta \to 0^+} \frac{\sin \theta}{\theta^2} = \left(\lim_{\theta \to 0^+} \frac{1}{\theta}\right) \lim_{\theta \to 0^+} \frac{\sin \theta}{\theta} = +\infty.$ **18.** $\lim_{\theta \to 0^+} \frac{\sin^2 \theta}{\theta} = \left(\lim_{\theta \to 0} \sin \theta\right) \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 0.$ **19.** $\frac{\tan 7x}{\sin 3x} = \frac{7}{3\cos 7x} \cdot \frac{\sin 7x}{7x} \cdot \frac{3x}{\sin 3x}$, so $\lim_{x \to 0} \frac{\tan 7x}{\sin 3x} = \frac{7}{3 \cdot 1} \cdot 1 \cdot 1 = \frac{7}{3}$. **20.** $\frac{\sin 6x}{\sin 8x} = \frac{6}{8} \cdot \frac{\sin 6x}{6x} \cdot \frac{8x}{\sin 8x}$, so $\lim_{x \to 0} \frac{\sin 6x}{\sin 8x} = \frac{6}{8} \cdot 1 \cdot 1 = \frac{3}{4}$. **21.** $\lim_{x \to 0^+} \frac{\sin x}{5\sqrt{x}} = \frac{1}{5} \lim_{x \to 0^+} \sqrt{x} \lim_{x \to 0^+} \frac{\sin x}{x} = 0.$ **22.** $\lim_{x \to 0} \frac{\sin^2 x}{3x^2} = \frac{1}{3} \left(\lim_{x \to 0} \frac{\sin x}{x} \right)^2 = \frac{1}{3}.$ **23.** $\lim_{x \to 0} \frac{\sin x^2}{x} = \left(\lim_{x \to 0} x\right) \left(\lim_{x \to 0} \frac{\sin x^2}{x^2}\right) = 0.$

24. $\frac{\sin h}{1 - \cos h} = \frac{\sin h}{1 - \cos h} \cdot \frac{1 + \cos h}{1 + \cos h} = \frac{\sin h(1 + \cos h)}{1 - \cos^2 h} = \frac{1 + \cos h}{\sin h}$; this implies that $\lim_{h \to 0^+} \text{ is } +\infty$, and $\lim_{h \to 0^-} \text{ is } -\infty$, therefore the limit does not exist.

25.
$$\frac{t^2}{1-\cos^2 t} = \left(\frac{t}{\sin t}\right)^2$$
, so $\lim_{t \to 0} \frac{t^2}{1-\cos^2 t} = 1$.

26. $\cos(\frac{1}{2}\pi - x) = \cos(\frac{1}{2}\pi)\cos x + \sin(\frac{1}{2}\pi)\sin x = \sin x$, so $\lim_{x \to 0} \frac{x}{\cos(\frac{1}{2}\pi - x)} = 1$.

$$\mathbf{27.} \quad \frac{\theta^2}{1-\cos\theta} \cdot \frac{1+\cos\theta}{1+\cos\theta} = \frac{\theta^2(1+\cos\theta)}{1-\cos^2\theta} = \left(\frac{\theta}{\sin\theta}\right)^2 (1+\cos\theta), \text{ so } \lim_{\theta\to 0} \frac{\theta^2}{1-\cos\theta} = (1)^2 \cdot 2 = 2.$$

 $\mathbf{28.} \quad \frac{1-\cos 3h}{\cos^2 5h-1} \cdot \frac{1+\cos 3h}{1+\cos 3h} = \frac{\sin^2 3h}{-\sin^2 5h} \cdot \frac{1}{1+\cos 3h}, \text{ so (using the result of problem 20)}$

$$\lim_{x \to 0} \frac{1 - \cos 3h}{\cos^2 5h - 1} = \lim_{x \to 0} \frac{\sin^2 3h}{-\sin^2 5h} \cdot \frac{1}{1 + \cos 3h} = -\left(\frac{3}{5}\right)^2 \cdot \frac{1}{2} = -\frac{9}{50}$$

29. $\lim_{x \to 0^+} \sin\left(\frac{1}{x}\right) = \lim_{t \to +\infty} \sin t$, so the limit does not exist.

$$30. \quad \frac{\tan 3x^2 + \sin^2 5x}{x^2} = \frac{3}{\cos 3x^2} \frac{\sin 3x^2}{3x^2} + 25 \frac{\sin^2 5x}{(5x)^2}, \text{ so limit} = \lim_{x \to 0} \frac{3}{\cos 3x^2} \lim_{x \to 0} \frac{\sin 3x^2}{3x^2} + 25 \lim_{x \to 0} \left(\frac{\sin 5x}{5x}\right)^2 = 3 + 25$$

31.
$$\lim_{x \to 0} \frac{\tan ax}{\sin bx} = \lim_{x \to 0} \frac{a}{b} \frac{\sin ax}{ax} \frac{1}{\cos ax} \frac{bx}{\sin bx} = a/b.$$

32.
$$\lim_{x \to 0} \frac{\sin^2(kx)}{x} = \lim_{x \to 0} k^2 x \left(\frac{\sin(kx)}{kx}\right)^2 = 0$$

33. (a) 4 4.5 4.9 5.1 5.5 6 0.093497 0.100932 0.100842 0.098845 0.091319 0.076497

The limit appears to be 0.1.

(b) Let
$$t = x - 5$$
. Then $t \to 0$ as $x \to 5$ and $\lim_{x \to 5} \frac{\sin(x-5)}{x^2 - 25} = \lim_{x \to 5} \frac{1}{x+5} \lim_{t \to 0} \frac{\sin t}{t} = \frac{1}{10} \cdot 1 = \frac{1}{10}$

34. (a)	-2.1	-2.01	-2.01 -2.001		-1.99	-1.9	
	-1.09778	-1.00998	-1.00100	-0.99900	-0.98998	-0.89879	

The limit appears to be -1.

(b) Let t = (x+2)(x+1). Then $t \to 0$ as $x \to -2$, and $\lim_{x \to -2} \frac{\sin[(x+2)(x+1)]}{x+2} = \lim_{x \to -2} (x+1) \lim_{t \to 0} \frac{\sin t}{t} = -1 \cdot 1 = -1$ by the Substitution Principle.

- **35.** True: let $\epsilon > 0$ and $\delta = \epsilon$. Then if $|x (-1)| = |x + 1| < \delta$ then $|f(x) + 5| < \epsilon$.
- **36.** True; from the proof of Theorem 1.6.3 we have $\tan x \ge x \ge \sin x$ for $0 < x < \pi/2$, and the desired inequalities follow immediately.
- **37.** True; the functions $f(x) = x, g(x) = \sin x$, and h(x) = 1/x are continuous everywhere except possibly at x = 0, so by Theorem 1.5.6 the given function is continuous everywhere except possibly at x = 0. We prove that

 $\lim_{x\to 0} x\sin(1/x) = 0.$ Let $\epsilon > 0.$ Then with $\delta = \epsilon$, if $|x| < \delta$ then $|x\sin(1/x)| \le |x| < \delta = \epsilon$, and hence f is continuous everywhere.

- **38.** True; by the Squeezing Theorem 1.6.4 $\left|\lim_{x \to 0} xf(x)\right| \le M \lim_{x \to 0} |x| = 0$ and $\left|\lim_{x \to +\infty} \frac{f(x)}{x}\right| \le M \lim_{x \to +\infty} \frac{1}{x} = 0.$
- **39.** (a) The student calculated x in degrees rather than radians.

(b) $\sin x^{\circ} = \sin t$ where x° is measured in degrees, t is measured in radians and $t = \frac{\pi x^{\circ}}{180}$. Thus $\lim_{x^{\circ} \to 0} \frac{\sin x^{\circ}}{x^{\circ}} = \lim_{t \to 0} \frac{\sin t}{(180t/\pi)} = \frac{\pi}{180}$.

40. Denote θ by x in accordance with Figure 1.6.4. Let P have coordinates $(\cos x, \sin x)$ and Q coordinates (1,0) so that $c^2(x) = (1 - \cos x)^2 + \sin^2 x = 2(1 - \cos x)$. Since $s = r\theta = 1 \cdot x = x$ we have $\lim_{x \to 0^+} \frac{c^2(x)}{s^2(x)} = \lim_{x \to 0^+} 2\frac{1 - \cos x}{x^2} = \lim_{x \to 0^+} 2\frac{1 - \cos x}{x^2} = \lim_{x \to 0^+} 2\frac{1 - \cos x}{x} = \lim_{x \to 0^+} \left(\frac{\sin x}{x}\right)^2 \frac{2}{1 + \cos x} = 1.$

41.
$$\lim_{x \to 0^-} f(x) = k \lim_{x \to 0} \frac{\sin kx}{kx \cos kx} = k$$
, $\lim_{x \to 0^+} f(x) = 2k^2$, so $k = 2k^2$, and the nonzero solution is $k = \frac{1}{2}$.

42. No; $\sin x/|x|$ has unequal one-sided limits (+1 and -1).

43. (a) $\lim_{t \to 0^+} \frac{\sin t}{t} = 1.$

(b)
$$\lim_{t \to 0^{-}} \frac{1 - \cos t}{t} = 0$$
 (Theorem 1.6.3)

(c)
$$\sin(\pi - t) = \sin t$$
, so $\lim_{x \to \pi} \frac{\pi - x}{\sin x} = \lim_{t \to 0} \frac{t}{\sin t} = 1$

44. Let
$$t = \frac{\pi}{2} - \frac{\pi}{x}$$
. Then $\cos\left(\frac{\pi}{2} - t\right) = \sin t$, so $\lim_{x \to 2} \frac{\cos(\pi/x)}{x - 2} = \lim_{t \to 0} \frac{(\pi - 2t)\sin t}{4t} = \lim_{t \to 0} \frac{\pi - 2t}{4} \lim_{t \to 0} \frac{\sin t}{t} = \frac{\pi}{4}$.

45.
$$t = x - 1$$
; $\sin(\pi x) = \sin(\pi t + \pi) = -\sin \pi t$; and $\lim_{x \to 1} \frac{\sin(\pi x)}{x - 1} = -\lim_{t \to 0} \frac{\sin \pi t}{t} = -\pi$.

46.
$$t = x - \pi/4$$
; $\tan x - 1 = \frac{2\sin t}{\cos t - \sin t}$; $\lim_{x \to \pi/4} \frac{\tan x - 1}{x - \pi/4} = \lim_{t \to 0} \frac{2\sin t}{t(\cos t - \sin t)} = 2$.

- **47.** $-|x| \le x \cos\left(\frac{50\pi}{x}\right) \le |x|$, which gives the desired result.
- **48.** $-x^2 \le x^2 \sin\left(\frac{50\pi}{\sqrt[3]{x}}\right) \le x^2$, which gives the desired result.
- **49.** Since $\lim_{x \to 0} \sin(1/x)$ does not exist, no conclusions can be drawn.
- **50.** $\lim_{x\to 0} f(x) = 1$ by the Squeezing Theorem.

51. $\lim_{x \to \pm\infty} f(x) = 0$ by the Squeezing Theorem.

53. (a) Let $f(x) = x - \cos x$; f(0) = -1, $f(\pi/2) = \pi/2$. By the IVT there must be a solution of f(x) = 0.

54. (a) $f(x) = x + \sin x - 1$; f(0) = -1, $f(\pi/6) = \pi/6 - 1/2 > 0$. By the IVT there must be a solution of f(x) = 0 in the interval.

55. (a) Gravity is strongest at the poles and weakest at the equator.

(b) Let $g(\phi)$ be the given function. Then g(38) < 9.8 and g(39) > 9.8, so by the Intermediate Value Theorem there is a value c between 38 and 39 for which g(c) = 9.8 exactly.

Exercise Set 1.7

- 1. $\sin^{-1} u$ is continuous for $-1 \le u \le 1$, so $-1 \le 2x \le 1$, or $-1/2 \le x \le 1/2$.
- **2.** $\cos^{-1} u$ is continuous for $-1 \le u \le 1$, so $0 \le \sqrt{2x} \le 1$, or $0 \le x \le 1/2$.
- **3.** \sqrt{u} is continuous for $0 \le u$, so $0 \le \tan^{-1} x$, or $x \ge 0$; $x^2 9 \ne 0$, thus the function is continuous for $0 \le x < 3$ and x > 3.
- 4. $\sin^{-1} u$ is continuous for $-1 \le u \le 1$, so $-1 \le 1/x \le 1$, thus $x \le -1$ or $x \ge 1$. The function is continuous on $(-\infty, -1] \cup [1, \infty)$.
- **5.** $\tan \theta = 4/3$, $0 < \theta < \pi/2$; use the triangle shown to get $\sin \theta = 4/5$, $\cos \theta = 3/5$, $\cot \theta = 3/4$, $\sec \theta = 5/3$, $\csc \theta = 5/4$.

6. $\sec \theta = 2.6, 0 < \theta < \pi/2$; use the triangle shown to get $\sin \theta = 2.4/2.6 = 12/13, \cos \theta = 1/2.6 = 5/13, \tan \theta = 2.4 = 12/5, \cot \theta = 5/12, \csc \theta = 13/12.$

- 7. (a) $0 \le x \le \pi$ (b) $-1 \le x \le 1$ (c) $-\pi/2 < x < \pi/2$ (d) $-\infty < x < +\infty$
- 8. Let $\theta = \sin^{-1}(-3/4)$; then $\sin \theta = -3/4, -\pi/2 < \theta < 0$ and (see figure) $\sec \theta = 4/\sqrt{7}$.

9. Let $\theta = \cos^{-1}(3/5)$; $\sin 2\theta = 2\sin\theta\cos\theta = 2(4/5)(3/5) = 24/25$.

18. $\sin 2\theta = gR/v^2 = (9.8)(18)/(14)^2 = 0.9$, $2\theta = \sin^{-1}(0.9)$ or $2\theta = 180^\circ - \sin^{-1}(0.9)$ so $\theta = \frac{1}{2}\sin^{-1}(0.9) \approx 32^\circ$ or $\theta = 90^\circ - \frac{1}{2}\sin^{-1}(0.9) \approx 58^\circ$. The ball will have a lower parabolic trajectory for $\theta = 32^\circ$ and hence will result in the shorter time of flight.

19.
$$\lim_{x \to +\infty} \sin^{-1}\left(\frac{x}{1-2x}\right) = \sin^{-1}\left(\lim_{x \to +\infty} \frac{x}{1-2x}\right) = \sin^{-1}\left(-\frac{1}{2}\right) = -\frac{\pi}{6}.$$

20.
$$\lim_{x \to +\infty} \cos(2\tan^{-1}x) = \cos(\lim_{x \to +\infty} 2\tan^{-1}x) = \cos(2(\pi/2)) = -1.$$

- **21.** False; the range of \sin^{-1} is $[-\pi/2, \pi/2]$, so the equation is only true for x in this range.
- **22.** False; it is the interval $-\pi/2 < x < \pi/2$.
- **23.** True; the line $y = \pi/2$ is a horizontal asymptote as $x \to \infty$ and as $x \to -\infty$.
- **24.** Let $g(x) = f^{-1}(x)$ and h(x) = f(x)/x when $x \neq 0$ and h(0) = L. Then $\lim_{x \to 0} h(x) = L = h(0)$, so h is continuous at x = 0. Apply Theorem 1.5.5 to $h \circ g$ to obtain that on the one hand h(g(0)) = L, and on the other $h(g(x)) = \frac{f(g(x))}{g(x)}$, $x \neq 0$, and $\lim_{x \to 0} h(g(x)) = h(g(0))$. Since f(g(x)) = x and $g = f^{-1}$ this shows that $\lim_{x \to 0} \frac{x}{f^{-1}(x)} = L$.

25. $\lim_{x \to 0} \frac{x}{\sin^{-1} x} = \lim_{x \to 0} \frac{\sin x}{x} = 1.$

26.
$$\tan(\tan^{-1} x) = x$$
, so $\lim_{x \to 0} \frac{\tan^{-1} x}{x} = \lim_{x \to 0} \frac{x}{\tan x} = (\lim_{x \to 0} \cos x) \lim_{x \to 0} \frac{x}{\sin x} = 1$.

27.
$$5 \lim_{x \to 0} \frac{\sin^{-1} 5x}{5x} = 5 \lim_{x \to 0} \frac{5x}{\sin 5x} = 5$$

28.
$$\lim_{x \to 1} \frac{1}{x+1} \lim_{x \to 1} \frac{\sin^{-1}(x-1)}{x-1} = \frac{1}{2} \lim_{x \to 1} \frac{x-1}{\sin(x-1)} = \frac{1}{2}.$$

(b) The domain of $\cot^{-1} x$ is $(-\infty, +\infty)$, the range is $(0, \pi)$; the domain of $\csc^{-1} x$ is $(-\infty, -1] \cup [1, +\infty)$, the range is $[-\pi/2, 0) \cup (0, \pi/2]$.

- **30.** (a) $y = \cot^{-1} x$; if x > 0 then $0 < y < \pi/2$ and $x = \cot y$, $\tan y = 1/x$, $y = \tan^{-1}(1/x)$; if x < 0 then $\pi/2 < y < \pi$ and $x = \cot y = \cot(y \pi)$, $\tan(y \pi) = 1/x$, $y = \pi + \tan^{-1}\frac{1}{x}$.
 - (b) $y = \sec^{-1} x, x = \sec y, \cos y = 1/x, y = \cos^{-1}(1/x).$
 - (c) $y = \csc^{-1} x$, $x = \csc y$, $\sin y = 1/x$, $y = \sin^{-1}(1/x)$.
- **31.** (a) 55.0° (b) 33.6° (c) 25.8°

32. $\theta = \alpha - \beta$, $\cot \alpha = \frac{x}{a+b}$ and $\cot \beta = \frac{x}{b}$ so $\theta = \cot^{-1} \frac{x}{a+b} - \cot^{-1} \left(\frac{x}{b}\right)$.

- **33.** (a) If $\gamma = 90^{\circ}$, then $\sin \gamma = 1$, $\sqrt{1 \sin^2 \phi \sin^2 \gamma} = \sqrt{1 \sin^2 \phi} = \cos \phi$, $D = \tan \phi \tan \lambda = (\tan 23.45^{\circ})(\tan 65^{\circ}) \approx 0.93023374$ so $h \approx 21.1$ hours.
 - (b) If $\gamma = 270^\circ$, then $\sin \gamma = -1$, $D = -\tan \phi \tan \lambda \approx -0.93023374$ so $h \approx 2.9$ hours.
- **34. (b)** $\theta = \sin^{-1} \frac{R}{R+h} = \sin^{-1} \frac{6378}{16,378} \approx 23^{\circ}.$
- **35.** y = 0 when $x^2 = 6000v^2/g$, $x = 10v\sqrt{60/g} = 1000\sqrt{30}$ for v = 400 and g = 32; $\tan \theta = 3000/x = 3/\sqrt{30}$, $\theta = \tan^{-1}(3/\sqrt{30}) \approx 29^\circ$.
- **36.** (a) Let $\theta = \sin^{-1}(-x)$ then $\sin \theta = -x, -\pi/2 \le \theta \le \pi/2$. But $\sin(-\theta) = -\sin \theta$ and $-\pi/2 \le -\theta \le \pi/2$ so $\sin(-\theta) = -(-x) = x, -\theta = \sin^{-1} x, \theta = -\sin^{-1} x.$
 - (b) Proof is similar to that in part (a).
- **37.** (a) Let $\theta = \cos^{-1}(-x)$ then $\cos \theta = -x$, $0 \le \theta \le \pi$. But $\cos(\pi \theta) = -\cos \theta$ and $0 \le \pi \theta \le \pi$ so $\cos(\pi \theta) = x$, $\pi \theta = \cos^{-1} x$, $\theta = \pi \cos^{-1} x$.

(b) Let $\theta = \sec^{-1}(-x)$ for $x \ge 1$; then $\sec \theta = -x$ and $\pi/2 < \theta \le \pi$. So $0 \le \pi - \theta < \pi/2$ and $\pi - \theta = \sec^{-1}\sec(\pi - \theta) = \sec^{-1}(-\sec\theta) = \sec^{-1}x$, or $\sec^{-1}(-x) = \pi - \sec^{-1}x$.

38. (a) $\sin^{-1} x = \tan^{-1} \frac{x}{\sqrt{1-x^2}}$ (see figure).

(b)
$$\sin^{-1} x + \cos^{-1} x = \pi/2$$
; $\cos^{-1} x = \pi/2 - \sin^{-1} x = \pi/2 - \tan^{-1} \frac{x}{\sqrt{1-x^2}}$.

39.
$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta},$$

$$\tan(\tan^{-1}x + \tan^{-1}y) = \frac{\tan(\tan^{-1}x) + \tan(\tan^{-1}y)}{1 - \tan(\tan^{-1}x)\tan(\tan^{-1}y)} = \frac{x+y}{1-xy}$$

so $\tan^{-1}x + \tan^{-1}y = \tan^{-1}\frac{x+y}{1-xy}.$

40. (a)
$$\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} = \tan^{-1}\frac{1/2 + 1/3}{1 - (1/2)(1/3)} = \tan^{-1}1 = \pi/4.$$

(b)
$$2\tan^{-1}\frac{1}{3} = \tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{3} = \tan^{-1}\frac{1/3 + 1/3}{1 - (1/3)(1/3)} = \tan^{-1}\frac{3}{4},$$

 $2\tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{7} = \tan^{-1}\frac{3}{4} + \tan^{-1}\frac{1}{7} = \tan^{-1}\frac{3/4 + 1/7}{1 - (3/4)(1/7)} = \tan^{-1}1 = \pi/4.$

41.
$$\sin(\sec^{-1} x) = \sin(\cos^{-1}(1/x)) = \sqrt{1 - \left(\frac{1}{x}\right)^2} = \frac{\sqrt{x^2 - 1}}{|x|}.$$

Exercise Set 1.8

1. (a) -4 (b) 4 (c) 1/42. (a) 1/16 (b) 8 (c) 1/33. (a) 2.9691 (b) 0.03414. (a) 1.8882 (b) 0.93815. (a) $\log_2 16 = \log_2(2^4) = 4$ (b) $\log_2\left(\frac{1}{32}\right) = \log_2(2^{-5}) = -5$ (c) $\log_4 4 = 1$ (d) $\log_9 3 = \log_9(9^{1/2}) = 1/2$ 6. (a) $\log_{10}(0.001) = \log_{10}(10^{-3}) = -3$ (b) $\log_{10}(10^4) = 4$ (c) $\ln(e^3) = 3$ (d) $\ln(\sqrt{e}) = \ln(e^{1/2}) = 1/2$ 7. (a) 1.3655 (b) -0.30118. (a) -0.5229 (b) 1.14479. (a) $2\ln a + \frac{1}{2}\ln b + \frac{1}{2}\ln c = 2r + s/2 + t/2$ (b) $\ln b - 3\ln a - \ln c = s - 3r - t$ 10. (a) $\frac{1}{3}\ln c - \ln a - \ln b = t/3 - r - s$ (b) $\frac{1}{2}(\ln a + 3\ln b - 2\ln c) = r/2 + 3s/2 - t$

- **11. (a)** $1 + \log x + \frac{1}{2}\log(x-3)$ **(b)** $2\ln|x| + 3\ln(\sin x) \frac{1}{2}\ln(x^2+1)$
- 12. (a) $\frac{1}{3}\log|x+2| \log|\cos 5x|$ when x < -2 and $\cos 5x < 0$ or when x > -2 and $\cos 5x > 0$.
 - (b) $\frac{1}{2}\ln(x^2+1) \frac{1}{2}\ln(x^3+5)$

13.
$$\log \frac{2^4(16)}{3} = \log(256/3)$$

- 14. $\log \sqrt{x} \log(\sin^3 2x) + \log 100 = \log \frac{100\sqrt{x}}{\sin^3 2x}$
- **15.** $\ln \frac{\sqrt[3]{x}(x+1)^2}{\cos x}$
- **16.** $1 + x = 10^3 = 1000, x = 999$
- **17.** $\sqrt{x} = 10^{-1} = 0.1, x = 0.01$
- **18.** $x^2 = e^4, x = \pm e^2$
- **19.** $1/x = e^{-2}, x = e^{2}$
- **20.** x = 7
- **21.** 2x = 8, x = 4
- **22.** $\ln 4x \ln x^6 = \ln 2$, $\ln \frac{4}{x^5} = \ln 2$, $\frac{4}{x^5} = 2$, $x^5 = 2$, $x = \sqrt[5]{2}$
- **23.** $\ln 2x^2 = \ln 3$, $2x^2 = 3$, $x^2 = 3/2$, $x = \sqrt{3/2}$ (we discard $-\sqrt{3/2}$ because it does not satisfy the original equation).
- **24.** $\ln 3^x = \ln 2$, $x \ln 3 = \ln 2$, $x = \frac{\ln 2}{\ln 3}$

25. $\ln 5^{-2x} = \ln 3$, $-2x \ln 5 = \ln 3$, $x = -\frac{\ln 3}{2 \ln 5}$

26.
$$e^{-2x} = 5/3, \ -2x = \ln(5/3), \ x = -\frac{1}{2}\ln(5/3)$$

27.
$$e^{3x} = 7/2$$
, $3x = \ln(7/2)$, $x = \frac{1}{3}\ln(7/2)$

- **28.** $e^x(1-2x) = 0$ so $e^x = 0$ (impossible) or 1 2x = 0, x = 1/2
- **29.** $e^{-x}(x+2) = 0$ so $e^{-x} = 0$ (impossible) or x+2=0, x=-2
- **30.** With $u = e^{-x}$, the equation becomes $u^2 3u = -2$, so $(u 1)(u 2) = u^2 3u + 2 = 0$, and u = 1 or 2. Hence $x = -\ln(u)$ gives x = 0 or $x = -\ln 2$.

(b) Domain: all x; range: $0 < y \le 1$.

34. (a) Domain: all x; range: y < 1.

- **35.** False. The graph of an exponential function passes through (0, 1), but the graph of $y = x^3$ does not.
- **36.** True. For any b > 0, $b^0 = 1$.
- **37.** True, by definition.
- **38.** False. The domain is the interval x > 0.
- **39.** $\log_2 7.35 = (\log 7.35)/(\log 2) = (\ln 7.35)/(\ln 2) \approx 2.8777; \ \log_5 0.6 = (\log 0.6)/(\log 5) = (\ln 0.6)/(\ln 5) \approx -0.3174.$

42. (a) Let $X = \log_b x$ and $Y = \log_a x$. Then $b^X = x$ and $a^Y = x$ so $a^Y = b^X$, or $a^{Y/X} = b$, which means $\log_a b = Y/X$. Substituting for Y and X yields $\frac{\log_a x}{\log_b x} = \log_a b$, $\log_b x = \frac{\log_a x}{\log_a b}$.

(b) Let x = a to get $\log_b a = (\log_a a)/(\log_a b) = 1/(\log_a b)$ so $(\log_a b)(\log_b a) = 1$. Now $(\log_2 81)(\log_3 32) = (\log_2[3^4])(\log_3[2^5]) = (4\log_2 3)(5\log_3 2) = 20(\log_2 3)(\log_3 2) = 20$.

- **43.** $x \approx 1.47099$ and $x \approx 7.85707$.
- **44.** $x \approx \pm 0.836382$

(d) $y = (\sqrt{5})^x$

45. (a) No, the curve passes through the origin.

46. (a) As $x \to +\infty$ the function grows very slowly, but it is always increasing and tends to $+\infty$. As $x \to 1^+$ the function tends to $-\infty$.

(b) $y = (\sqrt[4]{2})^x$

(c) $y = 2^{-x} = (1/2)^x$

47. $\log(1/2) < 0$ so $3\log(1/2) < 2\log(1/2)$.

48. Let $x = \log_b a$ and $y = \log_b c$, so $a = b^x$ and $c = b^y$. First, $ac = b^x b^y = b^{x+y}$ or equivalently, $\log_b(ac) = x + y = \log_b a + \log_b c$. Second, $a/c = b^x/b^y = b^{x-y}$ or equivalently, $\log_b(a/c) = x - y = \log_b a - \log_b c$. Next, $a^r = (b^x)^r = b^{rx}$ or equivalently, $\log_b a^r = rx = r \log_b a$. Finally, $1/c = 1/b^y = b^{-y}$ or equivalently, $\log_b(1/c) = -y = -\log_b c$.

49.
$$\lim_{x \to -\infty} \frac{1 - e^x}{1 + e^x} = \frac{1 - 0}{1 + 0} = 1.$$

50. Divide the numerator and denominator by e^x : $\lim_{x \to +\infty} \frac{1 - e^x}{1 + e^x} = \lim_{x \to +\infty} \frac{e^{-x} - 1}{e^{-x} + 1} = \frac{0 - 1}{0 + 1} = -1.$

51. Divide the numerator and denominator by e^x : $\lim_{x \to +\infty} \frac{1 + e^{-2x}}{1 - e^{-2x}} = \frac{1 + 0}{1 - 0} = 1.$

52. Divide the numerator and denominator by e^{-x} : $\lim_{x \to -\infty} \frac{e^{2x} + 1}{e^{2x} - 1} = \frac{0+1}{0-1} = -1.$

- **53.** The limit is $-\infty$.
- 54. The limit is $+\infty$.

55.
$$\frac{x+1}{x} = 1 + \frac{1}{x}$$
, so $\lim_{x \to +\infty} \frac{(x+1)^x}{x^x} = e$ from Figure 1.3.4.

- **56.** $\left(1+\frac{1}{x}\right)^{-x} = \frac{1}{\left(1+\frac{1}{x}\right)^{x}}$, so the limit is e^{-1} .
- **57.** t = 1/x, $\lim_{t \to +\infty} f(t) = +\infty$.

- **58.** t = 1/x, $\lim_{t \to -\infty} f(t) = 0$.
- **59.** $t = \csc x$, $\lim_{t \to +\infty} f(t) = +\infty$.
- **60.** $t = \csc x$, $\lim_{t \to -\infty} f(t) = 0$.

61. Let $t = \ln x$. Then t also tends to $+\infty$, and $\frac{\ln 2x}{\ln 3x} = \frac{t + \ln 2}{t + \ln 3}$, so the limit is 1.

62. With
$$t = x - 1$$
, $\left[\ln(x^2 - 1) - \ln(x + 1)\right] = \ln(x + 1) + \ln(x - 1) - \ln(x + 1) = \ln t$, so the limit is $+\infty$.

63. Set t = -x, then get $\lim_{t \to -\infty} \left(1 + \frac{1}{t}\right)^t = e$ by Figure 1.3.4.

64. With t = x/2, $\lim_{x \to +\infty} \left(1 + \frac{2}{x}\right)^x = \left(\lim_{t \to +\infty} \left[1 + 1/t\right]^t\right)^2 = e^2$

65. From the hint, $\lim_{x \to +\infty} b^x = \lim_{x \to +\infty} e^{(\ln b)x} = \begin{cases} 0 & \text{if } b < 1, \\ 1 & \text{if } b = 1, \\ +\infty & \text{if } b > 1. \end{cases}$

66. It suffices by Theorem 1.1.3 to show that the left and right limits at zero are equal to e.

(a)
$$\lim_{x \to +\infty} (1+x)^{1/x} = \lim_{t \to 0^+} (1+1/t)^t = e.$$

(b) $\lim_{x \to -\infty} (1+x)^{1/x} = \lim_{t \to 0^-} (1+1/t)^t = e.$
 $200 \int_{160}^{10} \int_{120}^{10} \int_{120}^{10} \int_{120}^{10} \int_{10}^{10} \int_{10}^{10$

- (b) $\lim_{t \to \infty} v = 190 \left(1 \lim_{t \to \infty} e^{-0.168t} \right) = 190$, so the asymptote is v = c = 190 ft/sec.
- (c) Due to air resistance (and other factors) this is the maximum speed that a sky diver can attain.

68. (a)
$$p(1990) = 525/(1+1.1) = 250$$
 (million).

(c)
$$\lim_{t \to \infty} p(t) = \frac{525}{1 + 1.1 \lim_{t \to \infty} e^{-0.02225(t - 1990)}} = 525$$
 (million).

(d) The population becomes stable at this number.

69. (a)

n	2	3	4	5	6	7
$1 + 10^{-n}$	1.01	1.001	1.0001	1.00001	1.000001	1.0000001
$1 + 10^{n}$	101	1001	10001	100001	1000001	10000001
$(1+10^{-n})^{1+10^n}$	2.7319	2.7196	2.7184	2.7183	2.71828	2.718282

The limit appears to be e.

- (b) This is evident from the lower left term in the chart in part (a).
- (c) The exponents are being multiplied by a, so the result is e^a .

70. (a)
$$f(-x) = \left(1 - \frac{1}{x}\right)^{-x} = \left(\frac{x-1}{x}\right)^{-x} = \left(\frac{x}{x-1}\right)^{x}, f(x-1) = \left(\frac{x}{x-1}\right)^{x-1} = \left(\frac{x-1}{x}\right)f(-x)$$

(b) $\lim_{x \to -\infty} \left(1 + \frac{1}{x}\right)^{x} = \lim_{x \to +\infty} f(-x) = \left[\lim_{x \to +\infty} \frac{x}{x-1}\right] \lim_{x \to +\infty} f(x-1) = \lim_{x \to +\infty} f(x-1) = e.$

71. $75e^{-t/125} = 15, t = -125\ln(1/5) = 125\ln 5 \approx 201$ days.

- **72.** (a) If t = 0, then Q = 12 grams.
 - (b) $Q = 12e^{-0.055(4)} = 12e^{-0.22} \approx 9.63$ grams.

(c)
$$12e^{-0.055t} = 6, e^{-0.055t} = 0.5, t = -(\ln 0.5)/(0.055) \approx 12.6$$
 hours.

- **73.** (a) 7.4; basic (b) 4.2; acidic (c) 6.4; acidic (d) 5.9; acidic
- 74. (a) $\log[H^+] = -2.44, [H^+] = 10^{-2.44} \approx 3.6 \times 10^{-3} \text{ mol/L}$
 - (b) $\log[H^+] = -8.06, [H^+] = 10^{-8.06} \approx 8.7 \times 10^{-9} \text{ mol/L}$
- **75.** (a) 140 dB; damage (b) 120 dB; damage (c) 80 dB; no damage (d) 75 dB; no damage
- **76.** Suppose that $I_1 = 3I_2$ and $\beta_1 = 10 \log_{10} I_1/I_0$, $\beta_2 = 10 \log_{10} I_2/I_0$. Then $I_1/I_0 = 3I_2/I_0$, $\log_{10} I_1/I_0 = \log_{10} 3I_2/I_0 = \log_{10} 3 + \log_{10} I_2/I_0$, $\beta_1 = 10 \log_{10} 3 + \beta_2$, $\beta_1 \beta_2 = 10 \log_{10} 3 \approx 4.8$ decibels.
- 77. Let I_A and I_B be the intensities of the automobile and blender, respectively. Then $\log_{10} I_A/I_0 = 7$ and $\log_{10} I_B/I_0 = 9.3$, $I_A = 10^7 I_0$ and $I_B = 10^{9.3} I_0$, so $I_B/I_A = 10^{2.3} \approx 200$.
- **78.** First we solve $120 = 10 \log(I/I_0)$ to find the intensity of the original sound: $I = 10^{120/10}I_0 = 10^{12} \cdot 10^{-12} = 1 \text{ W/m}^2$. Hence the intensity of the *n*'th echo is $(2/3)^n \text{ W/m}^2$ and its decibel level is $10 \log\left(\frac{(2/3)^n}{10^{-12}}\right) = 10(n \log(2/3) + 12)$. Setting this equal to 10 gives $n = -\frac{11}{\log(2/3)} \approx 62.5$. So the first 62 echoes can be heard.
- **79.** (a) $\log E = 4.4 + 1.5(8.2) = 16.7, E = 10^{16.7} \approx 5 \times 10^{16} \text{ J}$
 - (b) Let M_1 and M_2 be the magnitudes of earthquakes with energies of E and 10E, respectively. Then $1.5(M_2 M_1) = \log(10E) \log E = \log 10 = 1$, $M_2 M_1 = 1/1.5 = 2/3 \approx 0.67$.
- 80. Let E_1 and E_2 be the energies of earthquakes with magnitudes M and M+1, respectively. Then $\log E_2 \log E_1 = \log(E_2/E_1) = 1.5$, $E_2/E_1 = 10^{1.5} \approx 31.6$.

Chapter 1 Review Exercises

1. (a) 1 (b) Does not exist.	(c) Does not exist.	(d) 1	(e) 3	(f) 0	(g) 0
-------------------------------------	---------------------	-------	-------	-------	--------------

(h) 2 (i) 1/2

For $x \neq 2$, $f(x) = \frac{1}{x+2}$, so the limit is 1/4.

(b)	x	-0.01	-0.001	-0.0001	0.0001	0.001	0.01
	f(x)	4.0021347	4.0000213	4.0000002	4.0000002	4.0000213	4.0021347

Use
$$\frac{\tan 4x}{x} = \frac{\sin 4x}{x\cos 4x} = \frac{4}{\cos 4x} \cdot \frac{\sin 4x}{4x}$$
; the limit is 4

5. The limit is $\frac{(-1)^3 - (-1)^2}{-1 - 1} = 1.$

6. For $x \neq 1$, $\frac{x^3 - x^2}{x - 1} = x^2$, so $\lim_{x \to 1} \frac{x^3 - x^2}{x - 1} = 1$.

7. If
$$x \neq -3$$
 then $\frac{3x+9}{x^2+4x+3} = \frac{3}{x+1}$ with limit $-\frac{3}{2}$.

8. The limit is $-\infty$.

9. By the highest degree terms, the limit is $\frac{2^5}{3} = \frac{32}{3}$.

$$10. \quad \frac{\sqrt{x^2+4}-2}{x^2} \cdot \frac{\sqrt{x^2+4}+2}{\sqrt{x^2+4}+2} = \frac{x^2}{x^2(\sqrt{x^2+4}+2)} = \frac{1}{\sqrt{x^2+4}+2}, \text{ so } \lim_{x \to 0} \frac{\sqrt{x^2+4}-2}{x^2} = \lim_{x \to 0} \frac{1}{\sqrt{x^2+4}+2} = \frac{1}{4}$$

11. (a) y = 0. **(b)** None. **(c)** y = 2.

12. (a) $\sqrt{5}$, no limit, $\sqrt{10}$, $\sqrt{10}$, no limit, $+\infty$, no limit.

(b)
$$-1, +1, -1, -1$$
, no limit, $-1, +1$

13. If $x \neq 0$, then $\frac{\sin 3x}{\tan 3x} = \cos 3x$, and the limit is 1.

14. If
$$x \neq 0$$
, then $\frac{x \sin x}{1 - \cos x} \cdot \frac{1 + \cos x}{1 + \cos x} = \frac{x}{\sin x}(1 + \cos x)$, so the limit is 2.

15. If
$$x \neq 0$$
, then $\frac{3x - \sin(kx)}{x} = 3 - k \frac{\sin(kx)}{kx}$, so the limit is $3 - k$.

$$16. \lim_{\theta \to 0} \tan\left(\frac{1 - \cos\theta}{\theta}\right) = \tan\left(\lim_{\theta \to 0} \frac{1 - \cos\theta}{\theta}\right) = \tan\left(\lim_{\theta \to 0} \frac{1 - \cos^2\theta}{\theta(1 + \cos\theta)}\right) = \tan\left(\lim_{\theta \to 0} \frac{\sin\theta}{\theta} \cdot \frac{\sin\theta}{(1 + \cos\theta)}\right) = 0.$$

17. As $t \to \pi/2^+$, $\tan t \to -\infty$, so the limit in question is 0.

18. $\ln(2\sin\theta\cos\theta) - \ln\tan\theta = \ln 2 + 2\ln\cos\theta$, so the limit is $\ln 2$.

19.
$$\left(1+\frac{3}{x}\right)^{-x} = \left[\left(1+\frac{3}{x}\right)^{x/3}\right]^{(-3)}$$
, so the limit is e^{-3} .

20.
$$\left(1+\frac{a}{x}\right)^{bx} = \left[\left(1+\frac{a}{x}\right)^{x/a}\right]^{(ab)}$$
, so the limit is e^{ab} .

21. \$2,001.60, \$2,009.66, \$2,013.62, \$2013.75.

23. (a)
$$f(x) = 2x/(x-1)$$
.

- **24.** Given any window of height 2ϵ centered at the point x = a, y = L there exists a width 2δ such that the window of width 2δ and height 2ϵ contains all points of the graph of the function for x in that interval.
- **25.** (a) $\lim_{x \to 2} f(x) = 5.$

(b) $\delta = (3/4) \cdot (0.048/8) = 0.0045.$

26. $\delta \approx 0.07747$ (use a graphing utility).

27. (a) |4x - 7 - 1| < 0.01 means 4|x - 2| < 0.01, or |x - 2| < 0.0025, so $\delta = 0.0025$.

(b)
$$\left| \frac{4x^2 - 9}{2x - 3} - 6 \right| < 0.05$$
 means $|2x + 3 - 6| < 0.05$, or $|x - 1.5| < 0.025$, so $\delta = 0.025$.

(c) $|x^2 - 16| < 0.001$; if $\delta < 1$ then |x + 4| < 9 if |x - 4| < 1; then $|x^2 - 16| = |x - 4||x + 4| \le 9|x - 4| < 0.001$ provided |x - 4| < 0.001/9 = 1/9000, take $\delta = 1/9000$, then $|x^2 - 16| < 9|x - 4| < 9(1/9000) = 1/1000 = 0.001$.

28. (a) Given $\epsilon > 0$ then $|4x - 7 - 1| < \epsilon$ provided $|x - 2| < \epsilon/4$, take $\delta = \epsilon/4$.

(b) Given
$$\epsilon > 0$$
 the inequality $\left| \frac{4x^2 - 9}{2x - 3} - 6 \right| < \epsilon$ holds if $|2x + 3 - 6| < \epsilon$, or $|x - 1.5| < \epsilon/2$, take $\delta = \epsilon/2$

29. Let $\epsilon = f(x_0)/2 > 0$; then there corresponds a $\delta > 0$ such that if $|x - x_0| < \delta$ then $|f(x) - f(x_0)| < \epsilon$, $-\epsilon < f(x) - f(x_0) < \epsilon$, $f(x) > f(x_0) - \epsilon = f(x_0)/2 > 0$, for $x_0 - \delta < x < x_0 + \delta$.

30. (a)	x	1.1	1.01	1.001	1.0001	1.00001	1.000001
	f(x)	0.49	0.54	0.540	0.5403	0.54030	0.54030

(b) cos 1

- **31.** (a) f is not defined at $x = \pm 1$, continuous elsewhere.
 - (b) None; continuous everywhere.
 - (c) f is not defined at x = 0 and x = -3, continuous elsewhere.
- **32.** (a) Continuous everywhere except $x = \pm 3$.
 - (b) Defined and continuous for $x \leq -1, x \geq 1$.
 - (c) Defined and continuous for x > 0.
- **33.** For x < 2 f is a polynomial and is continuous; for x > 2 f is a polynomial and is continuous. At x = 2, $f(2) = -13 \neq 13 = \lim_{x \to 2^+} f(x)$, so f is not continuous there.
- **35.** f(x) = -1 for $a \le x < \frac{a+b}{2}$ and f(x) = 1 for $\frac{a+b}{2} \le x \le b$; f does not take the value 0.
- **36.** If, on the contrary, $f(x_0) < 0$ for some x_0 in [0, 1], then by the Intermediate Value Theorem we would have a solution of f(x) = 0 in $[0, x_0]$, contrary to the hypothesis.
- **37.** f(-6) = 185, f(0) = -1, f(2) = 65; apply Theorem 1.5.8 twice, once on [-6, 0] and once on [0, 2].

38. (a)
$$x = f(y) = (e^y)^2 + 1; f^{-1}(x) = y = \ln \sqrt{x - 1} = \frac{1}{2} \ln(x - 1).$$

(b)
$$x = f(y) = \sin\left(\frac{1-2y}{y}\right); f^{-1}(x) = y = \frac{1}{2+\sin^{-1}x}$$

(c) $x = \frac{1}{1+3\tan^{-1}y}; y = \tan\left(\frac{1-x}{3x}\right)$. The range of f consists of all $x < \frac{-2}{3\pi-2}$ or $> \frac{2}{3\pi+2}$, so this is also the domain of f^{-1} . Hence $f^{-1}(x) = \tan\left(\frac{1-x}{3x}\right), x < \frac{-2}{3\pi-2}$ or $x > \frac{2}{3\pi+2}$.

39. Draw right triangles of sides 5, 12, 13, and 3, 4, 5. Then $\sin[\cos^{-1}(4/5)] = 3/5$, $\sin[\cos^{-1}(5/13)] = 12/13$, $\cos[\sin^{-1}(4/5)] = 3/5$, and $\cos[\sin^{-1}(5/13)] = 12/13$.

(a) $\cos[\cos^{-1}(4/5) + \sin^{-1}(5/13)] = \cos(\cos^{-1}(4/5))\cos(\sin^{-1}(5/13) - \sin(\cos^{-1}(4/5))\sin(\sin^{-1}(5/13))) = \frac{4}{5}\frac{12}{13} - \frac{3}{5}\frac{5}{13} = \frac{33}{65}.$

(b)
$$\sin[\sin^{-1}(4/5) + \cos^{-1}(5/13)] = \sin(\sin^{-1}(4/5))\cos(\cos^{-1}(5/13)) + \cos(\sin^{-1}(4/5))\sin(\cos^{-1}(5/13)) = \frac{4}{5}\frac{5}{13} + \frac{3}{5}\frac{12}{13} = \frac{56}{65}.$$

41. y = 5 ft = 60 in, so $60 = \log x$, $x = 10^{60}$ in $\approx 1.58 \times 10^{55}$ mi.

- **42.** $y = 100 \text{ mi} = 12 \times 5280 \times 100 \text{ in}$, so $x = \log y = \log 12 + \log 5280 + \log 100 \approx 6.8018 \text{ in}$.
- **43.** $3\ln(e^{2x}(e^x)^3) + 2\exp(\ln 1) = 3\ln e^{2x} + 3\ln(e^x)^3 + 2 \cdot 1 = 3(2x) + (3 \cdot 3)x + 2 = 15x + 2.$
- 44. $Y = \ln(Ce^{kt}) = \ln C + \ln e^{kt} = \ln C + kt$, a line with slope k and Y-intercept $\ln C$.

(b) The curve $y = e^{-x/2} \sin 2x$ has x-intercepts at $x = -\pi/2, 0, \pi/2, \pi, 3\pi/2$. It intersects the curve $y = e^{-x/2}$ at $x = \pi/4, 5\pi/4$ and it intersects the curve $y = -e^{-x/2}$ at $x = -\pi/4, 3\pi/4$.

- (b) As t gets larger, the velocity v grows towards 24.61 ft/s.
- (c) For large t the velocity approaches c = 24.61.
- (d) No; but it comes very close (arbitrarily close).
- (e) 3.009 s.

- (c) 220 sheep.
- 48. (a) The potato is done in the interval 27.65 < t < 32.71.
 - (b) The oven temperature is always 400° F, so the difference between the oven temperature and the potato temperature is D = 400 T. Initially D = 325, so solve D = 75 + 325/2 = 237.5 for t, so $t \approx 22.76$ min.
- **49.** (a) The function $\ln x x^{0.2}$ is negative at x = 1 and positive at x = 4, so by the intermediate value theorem it is zero somewhere in between.
 - (b) x = 3.654 and 332105.108.

If $x^k = e^x$ then $k \ln x = x$, or $\frac{\ln x}{x} = \frac{1}{k}$. The steps are reversible.

(b) By zooming it is seen that the maximum value of y is approximately 0.368 (actually, 1/e), so there are two distinct solutions of $x^k = e^x$ whenever k > e.

- (c) $x \approx 1.155, 26.093.$
- 51. (a) The functions x^2 and $\tan x$ are positive and increasing on the indicated interval, so their product $x^2 \tan x$ is also increasing there. So is $\ln x$; hence the sum $f(x) = x^2 \tan x + \ln x$ is increasing, and it has an inverse.

The asymptotes for f(x) are x = 0, $x = \pi/2$. The asymptotes for $f^{-1}(x)$ are y = 0, $y = \pi/2$.

Chapter 1 Making Connections

1. Let $P(x, x^2)$ be an arbitrary point on the curve, let $Q(-x, x^2)$ be its reflection through the y-axis, let O(0, 0) be the origin. The perpendicular bisector of the line which connects P with O meets the y-axis at a point $C(0, \lambda(x))$, whose ordinate is as yet unknown. A segment of the bisector is also the altitude of the triangle ΔOPC which is isosceles, so that CP = CO.

Using the symmetrically opposing point Q in the second quadrant, we see that $\overline{OP} = \overline{OQ}$ too, and thus C is equidistant from the three points O, P, Q and is thus the center of the unique circle that passes through the three points.

- **2.** Let *R* be the midpoint of the line segment connecting *P* and *O*, so that $R(x/2, x^2/2)$. We start with the Pythagorean Theorem $\overline{OC}^2 = \overline{OR}^2 + \overline{CR}^2$, or $\lambda^2 = (x/2)^2 + (x^2/2)^2 + (x/2)^2 + (\lambda x^2/2)^2$. Solving for λ we obtain $\lambda x^2 = (x^2 + x^4)/2$, $\lambda = 1/2 + x^2/2$.
- **3.** Replace the parabola with the general curve y = f(x) which passes through P(x, f(x)) and S(0, f(0)). Let the perpendicular bisector of the line through S and P meet the y-axis at $C(0, \lambda)$, and let $R(x/2, (f(x) \lambda)/2)$ be the midpoint of P and S. By the Pythagorean Theorem, $\overline{CS}^2 = \overline{RS}^2 + \overline{CR}^2$, or $(\lambda f(0))^2 = x^2/4 + \left[\frac{f(x) + f(0)}{2} f(0)\right]^2 + x^2/4 + \left[\frac{f(x) + f(0)}{2} \lambda\right]^2$, which yields $\lambda = \frac{1}{2} \left[f(0) + f(x) + \frac{x^2}{f(x) f(0)} \right]$.

4. (a) $f(0) = 0, C(x) = \frac{1}{8} + 2x^2, x^2 + (y - \frac{1}{8})^2 = (\frac{1}{8})^2.$

(b) $f(0) = 0, C(x) = \frac{1}{2}(\sec x + x^2), x^2 + (y - \frac{1}{2})^2 = (\frac{1}{2})^2.$

(c)
$$f(0) = 0, C(x) = \frac{1}{2} \frac{x^2 + |x|^2}{|x|}, x^2 + y^2 = 0$$
 (not a circle).

(d)
$$f(0) = 0, C(x) = \frac{1}{2} \frac{x(1 + \sin^2 x)}{\sin x}, x^2 + \left(y - \frac{1}{2}\right)^2 = \left(\frac{1}{2}\right)^2$$

(e)
$$f(0) = 1, C(x) = \frac{1}{2} \frac{x^2 - \sin^2 x}{\cos x - 1}, x^2 + y^2 = 1.$$

(f)
$$f(0) = 0, C(x) = \frac{1}{2g(x)} + \frac{x^2g(x)}{2}, x^2 + \left(y - \frac{1}{2g(0)}\right)^2 = \left(\frac{1}{2g(0)}\right)^2$$

(g)
$$f(0) = 0, C(x) = \frac{1}{2} \frac{1+x^{6}}{x^{2}}$$
, limit does not exist, osculating circle does not exist